Skip to main content

Relapsed Pediatric ALL

  • Chapter
  • First Online:
Pediatric Acute Lymphoblastic Leukemia

Abstract

Although the survival of children with acute lymphoblastic leukemia has considerably improved in the previous two decades, 15–20% of patients experience subsequent relapse. Immunophenotype, duration of first complete remission, and site of relapse are the most widely accepted risk factors used for patient stratification in pediatric relapsed ALL. Patients with bone marrow (BM) relapse of T-ALL or very early or early BM relapse of BCP-ALL receive multi-drug chemotherapy followed by hematopoietic stem cell transplantation (HSCT), while those with late BM relapse of BCP-ALL and negative minimal residual disease after re-induction undergo about 2 years of chemotherapy and can be treated without HSCT. Patients with late BM relapse of BCP-ALL who have poor minimal residual disease (MRD) response after re-induction are scheduled to receive HSCT at the time of second remission. Many novel agents for pediatric relapsed ALL have been developed in the previous decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78.

    Article  CAS  PubMed  Google Scholar 

  2. Tsuchida M, Ohara A, Manabe A, Kumagai M, Shimada H, Kikuchi A, et al. Long-term results of Tokyo Children's cancer study group trials for childhood acute lymphoblastic leukemia, 1984–1999. Leukemia. 2010;24(2):383.

    Article  CAS  PubMed  Google Scholar 

  3. Schrappe M, Bleckmann K, Zimmermann M, Biondi A, Möricke A, Locatelli F, et al. Reduced-intensity delayed intensification in standard-risk pediatric acute lymphoblastic leukemia defined by undetectable minimal residual disease: results of an international randomized trial (AIEOP-BFM ALL 2000). J Clin Oncol. 2018;36(3):244–53.

    Article  CAS  PubMed  Google Scholar 

  4. Tallen G, Ratei R, Mann G, Kaspers G, Niggli F, Karachunsky A, et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol. 2010;28(14):2339–47.

    Article  CAS  PubMed  Google Scholar 

  5. Gaynon PS, Harris RE, Altman AJ, Bostrom BC, Breneman JC, Hawks R, et al. Bone marrow transplantation versus prolonged intensive chemotherapy for children with acute lymphoblastic leukemia and an initial bone marrow relapse within 12 months of the completion of primary therapy: children's oncology group study CCG-1941. J Clin Oncol. 2006;24(19):3150–6.

    Article  PubMed  Google Scholar 

  6. Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet. 2010;376(9757):2009–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen K, Devidas M, Cheng SC, La M, Raetz EA, Carroll WL, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children's oncology group study. Leukemia. 2008;22(12):2142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weston BW, Hayden MA, Roberts KG, Bowyer S, Hsu J, Fedoriw G, et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–6.

    Article  PubMed  Google Scholar 

  9. Bailey CL, Lange BJ, Rheingold SR, Bunin NJ. Bone-marrow relapse in paediatric acute lymphoblastic leukaemia. Lancet Oncol. 2008;9(9):873–83.

    Article  PubMed  Google Scholar 

  10. Gaynon PS, Qu RP, Chappell RJ, Willoughby ML, Tubergen DG, Steinherz PG, et al. Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse- 331(the Children's cancer group experience). Cancer. 1998;82(7):1387–95.

    Article  CAS  PubMed  Google Scholar 

  11. Barrett AJ, Horowitz MM, Pollock BH, Zang MJ, Bortin MM, Buchanan GR, Camitta BM, et al. Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission. N Engl J Med. 1994;331(19):1253–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lawson SE, Harrison G, Richards S, Oakhill A, Stevens R, Eden OG, et al. The UK experience in treating relapsed childhood acute lymphoblastic leukaemia: a report on the medical research council UKALLR1 study. Br J Haematol. 2000;108(3):531–43.

    Article  CAS  PubMed  Google Scholar 

  13. Einsiedel H, von Stackelberg A, Hartmann R, Fengler R, Schrappe M, Janka-Schaub G, et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Münster group 87. J Clin Oncol. 2005;23(31):7942–50.

    Article  PubMed  Google Scholar 

  14. von Stackelberg A, Hartmann R, Bührer C, Fengler R, Janka-Schaub G, Reiter A, et al. High-dose compared with intermediate-dose methotrexate in children with a first relapse of acute lymphoblastic leukemia. Blood. 2008;111(5):2573–80.

    Article  CAS  Google Scholar 

  15. Gaynon PS. Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol. 2005;131(5):579–87.

    Article  PubMed  Google Scholar 

  16. Bhojwani D, Pui C-H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14(6):e205–17.

    Article  PubMed  Google Scholar 

  17. Locatelli F, Schrappe M, Bernardo M, Rutella S. How I treat relapsed childhood acute lymphoblastic leukemia. Blood. 2012;120(14):2807–16.

    Article  CAS  PubMed  Google Scholar 

  18. Gandemer V, Chevret S, Petit A, Vermylen C, Leblanc T, Michel G, et al. Excellent prognosis of late relapses of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia: lessons from the FRALLE 93 protocol. Haematologica. 2012;97(11):1743–50.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Krentz S, Hof J, Mendioroz A, Vaggopoulou R, Dörge P, Lottaz C, et al. Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia. 2013;27(2):295.

    Article  CAS  PubMed  Google Scholar 

  20. Hof J, Krentz S, van Schewick C, Körner G, Shalapour S, Rhein P, et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol. 2011;29(23):3185–93.

    Article  PubMed  Google Scholar 

  21. Irving JAE, Enshaei A, Parker CA, Sutton R, Kuiper RP, Erhorn A, et al. Integration of genetic and clinical risk factors improves prognostication in relapsed childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2016;128(7):911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dworzak MN, Fröschl G, Printz D, Mann G, Pötschger U, Mühlegger N, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952–8.

    Article  CAS  PubMed  Google Scholar 

  23. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC, et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood. 2000;96(8):2961–6.

    Article  Google Scholar 

  24. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's oncology group study. Blood. 2008;111(12):5457–85.

    Article  CAS  Google Scholar 

  25. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grümayer MA, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115(16):3206–14.

    Article  CAS  PubMed  Google Scholar 

  26. Eckert C, von Stackelberg A, Seeger K, Groeneveld T, Peters C, Klingebiel T, et al. Minimal residual disease after induction is the strongest predictor of prognosis in intermediate risk relapsed acute lymphoblastic leukaemia – long-term results of trial ALL-REZ BFM P95/96. Eur J Cancer. 2013;49(6):1346–55.

    Article  CAS  PubMed  Google Scholar 

  27. Parker C, Krishnan S, Hamadeh L, Irving JAE, Kuiper RP, Révész T, et al. Outcomes of patients with childhood B-cell precursor acute lymphoblastic leukaemia with late bone marrow relapses: long-term follow-up of the ALLR3 open-label randomised trial. Lancet Haematol. 2019;6(4):e204–16.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Paganin M, Zecca M, Fabbri G, Polato K, Biondi A, Rizzari C, et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia. 2008;22(12):2193.

    Article  CAS  PubMed  Google Scholar 

  29. Karawajew L, Dworzak M, Ratei R, Rhein P, Gaipa G, Buldini B, et al. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica. 2015;100(7):935–44.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bader P, Kreyenberg H, Henze GHR, Eckert C, Reising M, Willasch A, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM study group. J Clin Oncol. 2008;27(3):377–84.

    Article  PubMed  Google Scholar 

  31. Eckert C, Henze G, Seeger K, Hagedorn N, Mann G, Panzer-Grümayer R, et al. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children with relapsed acute lymphoblastic leukemia in the intermediate-risk group. J Clin Oncol. 2013;31(21):2736–42.

    Article  PubMed  Google Scholar 

  32. Reismüller B, Attarbaschi A, Peters C, Dworzak MN, Pötschger U, Urban C, et al. Long-term outcome of initially homogenously treated and relapsed childhood acute lymphoblastic leukaemia in Austria stem-cell trans-based report of the Austrian Berlin-Frankfurt-Münster (BFM) study group. Br J Haematol. 2009;144(4):559–70.

    Article  PubMed  Google Scholar 

  33. Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia consortium study. J Clin Oncol. 2009;28(4):648–54.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hagedorn N, Acquaviva C, Fronkova E, von Stackelberg A, Barth A, zur Stadt U, et al. Submicroscopic bone marrow involvement in isolated extramedullary relapses in childhood acute lymphoblastic leukemia: a more precise definition of “isolated” and its possible clinical implications, a collaborative study of the resistant disease Committee of the International BFM study group. Blood. 2007;110(12):4022–9.

    Article  CAS  PubMed  Google Scholar 

  35. Pui C-H, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9(3):257–68.

    Article  PubMed  Google Scholar 

  36. Barredo JC, Devidas M, Lauer SJ, Billett A, Marymont M, Pullen J, et al. Isolated CNS relapse of acute lymphoblastic leukemia treated with intensive systemic chemotherapy and delayed CNS radiation: a pediatric oncology group study. J Clin Oncol. 2006;24(19):3142–9.

    Article  CAS  PubMed  Google Scholar 

  37. Masurekar AN, Parker CA, Shanyinde M, Moorman AV, Hancock JP, Sutton R, et al. Outcome of central nervous system relapses in childhood acute lymphoblastic leukaemia--prospective open cohort analyses of the ALLR3 trial. PLoS One. 2014;9(10):e108107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Eapen M, Zhang MJJ, Devidas M, Raetz E, Barredo JC, Ritchey AK, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with acute lymphoblastic leukemia in a second remission after an isolated central nervous system relapse: a collaborative study of the Children's oncology group and the Center for International Blood and Marrow Transplant Research. Leukemia. 2008;22(2):281–6.

    Article  CAS  PubMed  Google Scholar 

  39. van den Berg H, Langeveld NE, Veenhof CHN, Behrendt H. Treatment of isolated testicular recurrence of acute lymphoblastic leukemia without radiotherapy. Cancer. 1997;79(11):2257–62.

    Article  PubMed  Google Scholar 

  40. Berg H, Langeveld NE, Veenhof CHN, Behrendt H. Treatment of isolated testicular recurrence of acute lymphoblastic leukemia without radiotherapy: report from the Dutch late effects study group. Cancer. 1997;79(11):2257–62.

    Article  PubMed  Google Scholar 

  41. Eapen M, Raetz E, Zhang M-J, Muehlenbein C, Devidas M, Abshire T, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children's oncology group and the Center for International Blood and Marrow Transplant Research. Blood. 2006;107(12):4961–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Uderzo C, Valsecchi MG, Bacigalupo A, Meloni G, Messina C, Polchi P, et al. Treatment of childhood acute lymphoblastic leukemia in second remission with allogeneic bone marrow transplantation and chemotherapy: ten-year experience of the Italian bone marrow transplantation group and the Italian pediatric hematology oncology association. J Clin Oncol. 1995;13(2):352–8.

    Article  CAS  PubMed  Google Scholar 

  43. Borgmann A, von Stackelberg A, Hartmann R, Ebell W, Klingebiel T, Peters C, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood. 2003;101(10):3835–9.

    Article  CAS  PubMed  Google Scholar 

  44. Leung W, Pui C-H, Coustan-Smith E, Yang J, Pei D, Gan K, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2012;120(2):468–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duval M, Klein JP, He W, Cahn JY, Cairo M, Camitta BM, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28(23):3730–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bertaina A, Zecca M, Buldini B, Sacchi N, Algeri M, Saglio F, et al. Unrelated donor vs HLA-haploidentical α/β T-cell- and B-cell-depleted HSCT in children with acute leukemia. Blood. 2018;132(24):2594–607.

    Article  CAS  PubMed  Google Scholar 

  47. Sano H, Mochizuki K, Kobayashi S, Ohara Y, Ito M, Waragai T, et al. T-cell-replete haploidentical stem cell transplantation using low-dose antithymocyte globulin in children with relapsed or refractory acute leukemia. Int J Hematol. 2018;108(1):76–84.

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi S, Ito M, Sano H, Mochizuki K, Akaihata M, Waragai T, et al. T-cell-replete haploidentical stem cell transplantation is highly efficacious for relapsed and refractory childhood acute leukaemia. Transfus Med. 2014;24(5):305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. von Stackelberg A, Locatelli F, Zugmaier G, Handgretinger R, Trippett TM, Rizzari C, et al. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol. 2016;34(36):4381–9.

    Article  Google Scholar 

  50. Bhojwani D, Sposto R, Shah NN, Rodriguez V, Yuan C, Stetler-Stevenson M, et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia. 2019;33(4):884–92.

    Article  CAS  PubMed  Google Scholar 

  51. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Messinger YH, Gaynon PS, Sposto R, van der Giessen J, Eckroth E, Malvar J, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: therapeutic advances in Childhood Leukemia & Lymphoma (TACL) study. Blood. 2012;120(2):285–90.

    Article  CAS  PubMed  Google Scholar 

  53. Horton TM, Whitlock JA, Lu X, O'Brien MM, Borowitz MJ, Devidas M, et al. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: a report from the Children's oncology group. Br J Haematol. 2019;186(2):274–85.. [Epub ahead of print]

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jeha S, Gaynon PS, Razzouk BI, Franklin J, Kadota R, Shen V, et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol. 2006;24(12):1917–23.

    Article  CAS  PubMed  Google Scholar 

  55. Hijiya N, Thomson B, Isakoff MS, Silverman LB, Steinherz PG, Borowitz MJ, et al. Phase 2 trial of clofarabine in combination with etoposide and cyclophosphamide in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. Blood. 2011;118(23):6043–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berg SL, Blaney SM, Devidas M, Lampkin TA, Murgo A, Bernstein M, et al. Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the children’s oncology group. J Clin Oncol. 2005;23(15):3376–82.

    Article  CAS  PubMed  Google Scholar 

  57. Commander LA, Seif AE, Insogna IG, Rheingold SR. Salvage therapy with nelarabine, etoposide, and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. Br J Haematol. 2010;150(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  58. Löffler A, Gruen M, Wuchter C, Schriever F, Kufer P, Dreier T, et al. Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Leukemia. 2003;17(5):900–9.

    Article  PubMed  CAS  Google Scholar 

  59. Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, et al. Extremely potent, rapid and co-stimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 2002;100(6):690–7.

    Article  CAS  PubMed  Google Scholar 

  60. Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005;115(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  61. Topp MS, Gökbuget N, Stein AS, Zugmaier G, O'Brien S, Bargou RC, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  62. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera J-M, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14.

    Article  CAS  PubMed  Google Scholar 

  64. Hinman LM, Hamann PR, Wallace R, Menendez AT, Durr FE, Upeslacis J. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res. 1993;53(14):3336–42.

    CAS  PubMed  Google Scholar 

  65. Shor B, Gerber H-P, Sapra P. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Mol Immunol. 2015;67(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  66. Hanna R, Ong GL, Mattes MJ. Processing of antibodies bound to B-cell lymphomas and other hematological malignancies. Cancer Res. 1996;56(13):3062–8.

    CAS  PubMed  Google Scholar 

  67. Bouchard H, Viskov C, Garcia-Echeverria C. Antibody–drug conjugates—a new wave of cancer drugs. Bioorg Med Chem Lett. 2014;24(23):5357–63.

    Article  CAS  PubMed  Google Scholar 

  68. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.

    Article  CAS  PubMed  Google Scholar 

  71. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, et al. Intent to treat leukemia remission by CD19CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jeha S, Gandhi V, Chan K, McDonald L, Ramirez I, Madden R, et al. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood. 2004;103(3):784–9.

    Article  CAS  PubMed  Google Scholar 

  73. O’Connor D, Sibson K, Caswell M, Connor P, Cummins M, Mitchell C, et al. Early UK experience in the use of clofarabine in the treatment of relapsed and refractory paediatric acute lymphoblastic leukaemia. Br J Haematol. 2011;154(4):482–5.

    Article  PubMed  CAS  Google Scholar 

  74. Locatelli F, Testi AM, Bernardo M, Rizzari C, Bertaina A, Merli P, et al. Clofarabine, cyclophosphamide and etoposide as single-course re-induction therapy for children with refractory/multiple relapsed acute lymphoblastic leukaemia. Br J Haematol. 2009;147(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  75. Dunsmore KP, Devidas M, Linda SB, Borowitz MJ, Winick N, Hunger SP, et al. Pilot study of nelarabine in combination with intensive chemotherapy in high-risk T-cell acute lymphoblastic leukemia: a report from the children's oncology group. J Clin Oncol. 2012;30(22):2753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Crombet O, Lastrapes K, Zieske A, Morales-Arias J. Complete morphologic and molecular remission after introduction of dasatinib in the treatment of a pediatric patient with t-cell acute lymphoblastic leukemia and ABL1 amplification. Pediatr Blood Cancer. 2012;59(2):333–4.

    Article  PubMed  Google Scholar 

  77. Glover JM, Loriaux M, Tyner JW, Druker BJ, Chang BH. In vitro sensitivity to dasatinib in lymphoblasts from a patient with t(17;19) (q22;p13) gene rearrangement pre-B acute lymphoblastic leukemia. Pediatr Blood Cancer. 2012;59(3):576–9.

    Article  PubMed  Google Scholar 

  78. Goto H. Childhood relapsed acute lymphoblastic leukemia: biology and recent treatment progress. Pediatr Int. 2015;57(6):1059–66.

    Article  PubMed  Google Scholar 

  79. Bassan R, Bourquin J-P, DeAngelo DJ, Chiaretti S. New approaches to the management of adult acute lymphoblastic leukemia. J Clin Oncol. 2018;36:3504–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arakawa, A. (2020). Relapsed Pediatric ALL. In: Kato, M. (eds) Pediatric Acute Lymphoblastic Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-15-0548-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0548-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0547-8

  • Online ISBN: 978-981-15-0548-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics