Skip to main content

Low-Cost Adsorptive Removal Techniques for Pharmaceuticals and Personal Care Products

  • Chapter
  • First Online:
Measurement, Analysis and Remediation of Environmental Pollutants

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

The production and consumption of pharmaceuticals and personal care products (PPCPs) have grown ominously over the last 3–4 decades. PPCPs, often considered as emerging contaminants, are being perceived as a serious risk to receiving environments, especially water bodies, due to their ecotoxicological effects. Further, many of the PPCPs are generally persistent, leading to their environmental accumulation, which is evident from the several PPCPs detected in rivers, lakes, groundwater, and soils at variable concentration levels. Although high-end and energy intensive systems like membrane processes are fairly effective in the removal of PPCPs from water or wastewater, conventional treatment technologies often fail to remove PPCPs, and hence treated effluents from various sewage treatment plants have been reported to contain PPCPs from parts per million (ppm) to parts per trillion (ppt) levels. This chapter will discuss the cost effective technologies, especially adsorptive removal methods, being developed for the remediation, recovery, and treatment of PPCPs. A series of low-cost natural and synthetic adsorbents are being investigated, and have shown variable effectiveness and potential for the removal of PPCPs. The chapter will include a state-of-art literature summary on various low-cost adsorbents tested for the removal of selective PPCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons. J Environ Manage 190:274–282

    Article  CAS  Google Scholar 

  • Ahmed MB, Zhou JL, Ngo HH, Guo W (2015) Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci Total Environ 532:112–126

    Article  CAS  Google Scholar 

  • Alhashimi HA, Aktas CB (2017) Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resour Conserv Recycl 118:13–26

    Article  Google Scholar 

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112(10):5073–5091

    Article  CAS  Google Scholar 

  • Álvarez-Torrellas S, Rodríguez A, Ovejero G, Gómez JM, García J (2016) Removal of caffeine from pharmaceutical wastewater by adsorption: influence of NOM, textural and chemical properties of the adsorbent. Environ Technol 37(13):1618–1630

    Article  CAS  Google Scholar 

  • Antunes M, Esteves VI, Guégan R, Crespo JS, Fernandes AN, Giovanela M (2012) Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chem Eng J 192:114–121

    Article  CAS  Google Scholar 

  • Arena N, Lee J, Clift R (2016) Life cycle assessment of activated carbon production from coconut shells. J Clean Prod 125:68–77

    Article  CAS  Google Scholar 

  • Ashfaq M, Khan KN, Rehman MSU, Mustafa G, Nazar MF, Sun Q, Iqbal J, Mulla SI, Yu CP (2017) Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol Environ Saf 136:31–39

    Article  CAS  Google Scholar 

  • Attia TMS, Hu XL, Yin DQ (2013) Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies. Chemosphere 93(9):2076–2085

    Article  CAS  Google Scholar 

  • Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B (2017) A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 137:113–120

    Article  CAS  Google Scholar 

  • Balarak D, Mostafapour FK, Joghataei A (2017) Kinetics and mechanism of red mud in adsorption of ciprofloxacin in aqueous solution. Biosci Biotechnol Res Commun 10:241–248

    Article  Google Scholar 

  • Barceló D, Petrovic M (2007) Pharmaceuticals and personal care products (PPCPs) in the environment. Anal Bioanal Chem 387:1141–1142

    Article  CAS  Google Scholar 

  • Basheer AA (2018) New generation nano-adsorbents for the removal of emerging contaminants in water. J Mol Liq 261:583–593

    Article  CAS  Google Scholar 

  • Bhandari A, Surampalli RY, Adams CD, Champagne P, Ong SK, Tyagi RD, Zhang T (eds) (2009) Contaminants of emerging environmental concern. American Society of Civil Engineers

    Google Scholar 

  • Boxall AB, Rudd MA, Brooks BW, Caldwell DJ, Choi K, Hickmann S, Innes E, Ostapyk K, Staveley JP, Verslycke T, Ankley GT (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120(9):1221–1229

    Article  Google Scholar 

  • Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    Article  CAS  Google Scholar 

  • Cabrera-Lafaurie WA, Román FR, Hernández-Maldonado AJ (2014) Removal of salicylic acid and carbamazepine from aqueous solution with Y-zeolites modified with extraframework transition metal and surfactant cations: equilibrium and fixed-bed adsorption. J Env Chem Eng 2(2):899–906

    Article  CAS  Google Scholar 

  • Cabrera-Lafaurie WA, Román FR, Hernández-Maldonado AJ (2015) Single and multi-component adsorption of salicylic acid, Clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic–organic pillared clay fixed beds. J Hazard Mater 282:174–182

    Article  CAS  Google Scholar 

  • Calisto V, Ferreira CIA, Santos SM, Gil MV, Otero M, Esteves VI (2014) Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water. Bioresour Technol 166:335–344

    Article  CAS  Google Scholar 

  • Candela L, Fabregat S, Josa A, Suriol J, Vigués N, Mas J (2007) Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: application in a golf course (Girona, Spain). Sci Total Env 374(1):26–35

    Article  CAS  Google Scholar 

  • Caracciolo AB, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal 106:25–36

    Article  CAS  Google Scholar 

  • Carlsson C, Johansson AK, Alvan G, Bergman K, Kühler T (2006) Are pharmaceutical potent environmental pollutants. Part I: environmental risk assessments of selected active pharmaceutical ingredients. Sci Total Environ 364(13):67–87

    Article  CAS  Google Scholar 

  • Carlsson G, Örn S, Larsson DJ (2009) Effluent from bulk drug production is toxic to aquatic vertebrates. Environ Toxicol Chem 28(12):2656–2662

    Article  CAS  Google Scholar 

  • Chang PH, Li Z, Jiang WT, Sarkar B (2019) Clay minerals for pharmaceutical wastewater treatment. In: Modified clay and zeolite nanocomposite materials. Elsevier, pp 167–196

    Google Scholar 

  • Changotra R, Rajput H, Dhir A (2019a) Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment. J Photochem Photobiol A 376:175–184

    Article  CAS  Google Scholar 

  • Changotra R, Rajput H, Guin JP, Varshney L, Dhir A (2019b) Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater. Chem Eng J 370:595–605

    Article  CAS  Google Scholar 

  • Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39(19):4797–4807

    Article  CAS  Google Scholar 

  • Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17(1):195–213

    Article  CAS  Google Scholar 

  • Dai Y, Zhang N, Xing C, Cui Q, Sun Q (2019) The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223:12–27

    Article  CAS  Google Scholar 

  • Daneshvar E, Zarrinmehr MJ, Hashtjin AM, Farhadian O, Bhatnagar A (2018) Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption. Biores Technol 268:523–530

    Article  CAS  Google Scholar 

  • Davoli E, Zuccato E, Castiglioni S (2018) Illicit drugs in drinking water. Curr Opin Env Sci Health 7:92–97

    Article  Google Scholar 

  • de Andrade JR, Oliveira MF, da Silva MG, Vieira MG (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res 57(9):3103–3127

    Article  CAS  Google Scholar 

  • de Wilt A, van Gijn K, Verhoek T, Vergnes A, Hoek M, Rijnaarts H, Langenhoff A (2018) Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process. Water Res 138:97–105

    Article  CAS  Google Scholar 

  • Drout RJ, Robison L, Chen Z, Islamoglu T, Farha OK (2019) Zirconium metal–organic frameworks for organic pollutant adsorption. Trends Chem 1:304–317

    Article  Google Scholar 

  • Elhalil A, Elmoubarki R, Machrouhi A, Sadiq M, Abdennouri M, Qourzal S, Barka N (2017) Photocatalytic degradation of caffeine by ZnO–ZnAl2O4 nanoparticles derived from LDH structure. J Env Chem Eng 5(4):3719–3726

    Article  CAS  Google Scholar 

  • EPA (2017) Technical overview of ecological risk assessment: risk characterization. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/technical-overview-ecological-risk-assessment-risk. Assessed on 30 May 2019

  • Ferguson PJ, Bernot MJ, Doll JC, Lauer TE (2013) Detection of pharmaceuticals and personal care products (PPCPs) in near-shore habitats of southern Lake Michigan. Sci Total Environ 458:187–196

    Article  CAS  Google Scholar 

  • Fick J, Soderstrom H, Lindberg R, Phan C, Tysklind M, Larsson D (2009) Contamination of surface, ground and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522

    Article  CAS  Google Scholar 

  • Fu J, Lee WN, Coleman C, Nowack K, Carter J, Huang CH (2019) Removal of pharmaceuticals and personal care products by two-stage bio-filtration for drinking water treatment. Sci Total Environ 664:240–248

    Article  CAS  Google Scholar 

  • Genç N, Dogan EC (2015) Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalin Water Treat 53(3):785–793

    Article  CAS  Google Scholar 

  • Gomes J, Costa R, Quinta-Ferreira RM, Martins RC (2017) Application of ozonation for pharmaceuticals and personal care products removal from water. Sci Total Environ 586:265–283

    Article  CAS  Google Scholar 

  • Grassi M, Kaykioglu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. Emerging compounds removal from wastewater. Springer, Dordrecht, pp 15–37

    Chapter  Google Scholar 

  • Grover DP, Zhou JL, Frickers PE, Readman JW (2011) Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water. J Hazard Mater 185(2–3):1005–1011

    Article  CAS  Google Scholar 

  • Gupta K, Huo JB, Yang JCE, Fu ML, Yuan B, Chen Z (2019) (MoS4)2−  intercalated CAMoS4· LDH material for the efficient and facile sequestration of antibiotics from aqueous solution. Chem Eng J 355:637–649

    Google Scholar 

  • Hasan Z, Jeon J, Jhung SH (2012) Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J Hazard Mater 209:151–157

    Article  CAS  Google Scholar 

  • Hasan Z, Choi EJ, Jhung SH (2013) Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chem Eng J 219:537–544

    Article  CAS  Google Scholar 

  • Hernández F, Calısto-Ulloa N, Gómez-Fuentes C, Gómez M, Ferrer J, González-Rocha G, Bello-Toledo H, Botero-Coy AM, Boıx C, Ibáñez M, Montory M (2019) Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic. J Hazard Mater 363:447–456

    Article  CAS  Google Scholar 

  • Hignite C, Azarnoff DL (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20(2):337–341

    Article  CAS  Google Scholar 

  • Hijosa-Valsero M, Matamoros V, Martín-Villacorta J, Bécares E, Bayona JM (2010) Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. Water Res 44(5):1429–1439

    Article  CAS  Google Scholar 

  • Huggins TM, Haeger A, Biffinger JC, Ren ZJ (2016) Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res 94:225–232

    Article  CAS  Google Scholar 

  • Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46:406–433

    Article  CAS  Google Scholar 

  • Jiang JQ, Ashekuzzaman SM (2012) Development of novel inorganic adsorbent for water treatment. Curr Opin Chem Eng 1(2):191–199

    Article  CAS  Google Scholar 

  • Jiang WT, Chang PH, Wang YS, Tsai Y, Jean JS, Li Z, Krukowski K (2013) Removal of ciprofloxacin from water by birnessite. J Hazard Mater 250:362–369

    Article  CAS  Google Scholar 

  • Jindal K, Narayanam M, Singh S (2015) A systematic strategy for the identification and determination of pharmaceuticals in environment using advanced LC–MS tools: application to groundwater samples. J Pharm Biomed Anal 108:86–96

    Article  CAS  Google Scholar 

  • Kaczala F, Blum SE (2016) The occurrence of veterinary pharmaceuticals in the environment: a review. Curr Anal Chem 12(3):169–182

    Article  CAS  Google Scholar 

  • Kallenborn R, Brorström-Lundén, E Reiersen L-O, Wilson S (2018) Pharmaceuticals and personal care products (PPCPs) in Arctic environments: indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change. Env Sci Pollut Res 1–13

    Google Scholar 

  • Khazri H, Ghorbel-Abid I, Kalfat R, Trabelsi-Ayadi M (2017) Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study. Appl Water Sci 7(6):3031–3040

    Article  CAS  Google Scholar 

  • Kibuye FA, Gall HE, Elkin KR, Ayers B, Veith TL, Miller M, Jacob S, Hayden KR, Watson JE, Elliott HA (2019) Fate of pharmaceuticals in a spray-irrigation system: From wastewater to groundwater. Sci Total Environ 654:197–208

    Article  CAS  Google Scholar 

  • Klampfl CW (2018) Metabolization of pharmaceuticals by plants after uptake from water and soil: a review. TrAC Trends Anal Chem 111:13–26

    Article  CAS  Google Scholar 

  • Ku MS (2008) Use of the biopharmaceutical classification system in early drug development. AAPS J 10(1):208–212

    Article  CAS  Google Scholar 

  • Kümmerer K (2009a) Antibiotics in the aquatic environment—a review–part I. Chemosphere 75(4):417–434

    Article  CAS  Google Scholar 

  • Kümmerer K (2009b) Antibiotics in the aquatic environment–a review–part II. Chemosphere 75(4):435–441

    Article  CAS  Google Scholar 

  • Kyzas GZ, Fu J, Lazaridis NK, Bikiaris DN, Matis KA (2015) New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. J Mol Liq 209:87–93

    Article  CAS  Google Scholar 

  • Larsson DJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148(3):751–755

    Article  CAS  Google Scholar 

  • Laxminarayan R, Chaudhury RR (2016) Antibiotic resistance in India: drivers and opportunities for action. PLoS Med 13(3):e1001974

    Article  Google Scholar 

  • Lee Y, Kovalova L, McArdell CS, von Gunten U (2014) Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Res 64:134–148

    Article  CAS  Google Scholar 

  • Leusch FD, Neale PA, Busetti F, Card M, Humpage A, Orbell JD, Ridgway HF, Stewart MB, van de Merwe JP, Escher BI (2019) Transformation of endocrine disrupting chemicals, pharmaceutical and personal care products during drinking water disinfection. Sci Total Environ 657:1480–1490

    Article  CAS  Google Scholar 

  • Liu P, Zhang H, Feng Y, Yang F, Zhang J (2014) Removal of trace antibiotics from wastewater: a systematic study of nano-filtration combined with ozone-based advanced oxidation processes. Chem Eng J 240:211–220

    Article  CAS  Google Scholar 

  • Mannhold R, Kubinyi H, Folkers G (2009) Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability, vol 40. Wiley

    Google Scholar 

  • Mantri RV, Sanghvi R (2017) Solubility of pharmaceutical solids. In: Developing solid oral dosage forms. Academic Press, pp 3–22

    Google Scholar 

  • Martín J, del Mar Orta M, Medina-Carrasco S, Santos JL, Aparicio I, Alonso E (2018) Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-funtionalized high-charge swelling micas. Environ Res 164:488–494

    Article  CAS  Google Scholar 

  • Michael I, Vasquez MI, Hapeshi E, Haddad T, Baginska E, Kümmerer K, Fatta-Kassinos D (2014) Metabolites and transformation products of pharmaceuticals in the aquatic environment as contaminants of emerging concern. In: Advanced mass spectrometry-based techniques for the identification and structure elucidation of transformation products of emerging contaminants: Wiley, pp 413–459

    Google Scholar 

  • Miller TH, Bury NR, Owen SF, MacRae JI, Barron LP (2018) A review of the pharmaceutical exposome in aquatic fauna. Environ Pollut 239:129–146

    Article  CAS  Google Scholar 

  • Mutiyar PK, Mittal AK (2014) Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges. Environ Sci Pollut Res 21(12):7723–7736

    Article  CAS  Google Scholar 

  • Nielsen L, Bandosz TJ (2016) Analysis of the competitive adsorption of pharmaceuticals on waste derived materials. Chem Eng J 287:139–147

    Article  CAS  Google Scholar 

  • Nielsen S, Barratt MJ (2009) Prescription drug misuse: is technology friend or foe? Drug Alcohol Rev 28(1):81–86

    Article  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout B (2004) Diclofenac residues as a cause of population decline of White-backed Vultures in Pakistan. Nature 2004(427):630–633

    Article  CAS  Google Scholar 

  • Oh S, Shin WS, Kim HT (2016) Effects of pH, dissolved organic matter, and salinity on ibuprofen sorption on sediment. Environ Sci Pollut Res 23(22):882–889

    Article  CAS  Google Scholar 

  • Oladipo AA, Abureesh MA, Gazi M (2016) Bifunctional composite from spent “Cyprus coffee” for tetracycline removal and phenol degradation: Solar-Fenton process and artificial neural network. Int J Biol Macromol 90:89–99

    Article  CAS  Google Scholar 

  • Osuji OK, Umahi OT (2012) Pharmaceutical companies and access to medicines—social integration and ethical CSR resolution of a global public choice problem. J Glob Ethics 8(2–3):139–167

    Article  Google Scholar 

  • Paltiel O, Fedorova G, Tadmor G, Kleinstern G, Maor Y, Chefetz B (2016) Human exposure to wastewater-derived pharmaceuticals in fresh produce: a randomized controlled trial focusing on carbamazepine. Environ Sci Technol 50(8):4476–4482

    Article  CAS  Google Scholar 

  • Panthi S, Sapkota AR, Raspanti G, Allard SM, Bui A, Craddock HA, Murray R, Zhu L, East C, Handy E, Callahan MT (2019) Pharmaceuticals, herbicides, and disinfectants in agricultural water sources. Environ Res 174:1–8

    Article  CAS  Google Scholar 

  • Petrović M, Hernando MD, Díaz-Cruz MS, Barceló D (2005) Liquid chromatography–tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. J Chromatogr A 1067(1–2):1–14

    Article  CAS  Google Scholar 

  • Porter G, Grills N (2015) Medication misuse in India: a major public health issue in India. J Pub Health 38(2):150–157

    Article  Google Scholar 

  • Prakash V (1999) Status of vultures in Keoladeo National Park, Bharatpur, Rajasthan with special reference to population crash in Gyps species. J Bombay Nat Hist Soc 96(4):365–378

    Google Scholar 

  • Quesada HB, Baptista ATA, Cusioli LF, Seibert D, de Oliveira Bezerra C, Bergamasco R (2019) Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere 222:766–780

    Article  CAS  Google Scholar 

  • Ramaswamy BR, Shanmugam G, Velu G, Rengarajan B, Larsson DJ (2011) GC–MS analysis and ecotoxicological risk assessment of Triclosan, carbamazepine and parabens in Indian rivers. J Hazard Mater 186(2–3):1586–1593

    Article  CAS  Google Scholar 

  • Ramirez-Fuentes E, Lucho-Constantino C, Escamilla-Silva E, Dendooven L (2002) Characteristics, and carbon and nitrogen dynamics in soil irrigated with wastewater for different lengths of time. Biores Technol 85(2):179–187

    Article  CAS  Google Scholar 

  • Rehman MSU, Rashid N, Ashfaq M, Saif A, Ahmad N, Han JI (2015) Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 138:1045–1055

    Article  CAS  Google Scholar 

  • Reis EO, Foureaux AFS, Rodrigues JS, Moreira VR, Lebron YA, Santos LV, Amaral MC, Lange LC (2019) Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environ Pollut 250:773–781

    Article  CAS  Google Scholar 

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. a review. Chemosphere 93(7):1268–1287

    Article  CAS  Google Scholar 

  • Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbiol Biotechnol 27(8):1839–1846

    Article  Google Scholar 

  • Saggioro EM, Bila DM, Satyro S (2018) Ecotoxicology of pharmaceutical and personal care products (PPCPs). Ecotoxicology 79–110

    Google Scholar 

  • Santos LH, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175(1–3):45–95

    Article  CAS  Google Scholar 

  • Seo PW, Bhadra BN, Ahmed I, Khan NA, Jhung SH (2016) Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: remarkable adsorbents with hydrogen-bonding abilities. Sci Rep 6:34462

    Article  CAS  Google Scholar 

  • Shanmugam G, Sampath S, Selvaraj KK, Larsson DJ, Ramaswamy BR (2014) Non-steroidal anti-inflammatory drugs in Indian rivers. Environ Sci Pollut Res 21(2):921–931

    Article  CAS  Google Scholar 

  • Sharma BM, Bečanová J, Scheringer M, Sharma A, Bharat GK, Whitehead PG, Klánová J, Nizzetto L (2019) Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci Total Env 646:1459–1467

    Article  CAS  Google Scholar 

  • Silva CP, Jaria G, Otero M, Esteves VI, Calisto V (2018) Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken? Biores Technol 250:888–901

    Article  CAS  Google Scholar 

  • Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143

    Article  CAS  Google Scholar 

  • Song JY, Jhung SH (2017) Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: quantitative analyses of H-bonding in adsorption. Chem Eng J 322:366–374

    Article  CAS  Google Scholar 

  • Song JY, Ahmed I, Seo PW, Jhung SH (2016) UiO-66-type metal–organic framework with free carboxylic acid: versatile adsorbents via H-bond for both aqueous and nonaqueous phases. ACS Appl Mater Interfaces 8(40):27394–27402

    Article  CAS  Google Scholar 

  • Sotelo JL, Ovejero G, Rodríguez A, Álvarez S, García J (2013) Study of natural clay adsorbent sepiolite for the removal of caffeine from aqueous solutions: batch and fixed-bed column operation. Water Air Soil Pollut 224(3):1466

    Article  CAS  Google Scholar 

  • Subedi B, Balakrishna K, Sinha RK, Yamashita N, Balasubramanian VG, Kannan K (2015) Mass loading and removal of pharmaceuticals and personal care products, including psychoactive and illicit drugs and artificial sweeteners, in five sewage treatment plants in India. J Environ Chem Eng 3(4):2882–2891

    Article  CAS  Google Scholar 

  • Subedi B, Balakrishna K, Joshua DI, Kannan K (2017) Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere 167:429–437

    Article  CAS  Google Scholar 

  • Sui Q, Zhao W, Cao X, Lu S, Qiu Z, Gu X, Yu G (2017) Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: occurrence and removal by a full-scale membrane bioreactor. J Hazard Mater 323:99–108

    Article  CAS  Google Scholar 

  • Sun K, Shi Y, Wang X, Li Z (2017) Sorption and retention of diclofenac on zeolite in the presence of cationic surfactant. J Hazard Mater 323:584–592

    Article  CAS  Google Scholar 

  • Swarcewicz MK, Sobczak J, Paździoch W (2013) Removal of carbamazepine from aqueous solution by adsorption on fly ash-amended soil. Water Sci Technol 67:1396–1402

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  • Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G (2017) Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Biores Technol 224:1–12

    Article  CAS  Google Scholar 

  • Tong AY, Peake BM, Braund R (2011) Disposal practices for unused medications around the world. Environ Int 37(1):292–298

    Article  Google Scholar 

  • Triebskorn R, Casper H, Scheil V, Schwaiger J (2007) Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Anal Bioanal Chem 387(4):1405–1416

    Article  CAS  Google Scholar 

  • Vellinga A, Cormican S, Driscoll J, Furey M, O’Sullivan M, Cormican M (2014) Public practice regarding disposal of unused medicines in Ireland. Sci Total Environ 478:98–102

    Article  CAS  Google Scholar 

  • Verma VK, Subbiah S (2017) Prospects of silk sericin as an adsorbent for removal of ibuprofen from aqueous solution. Ind Eng Chem Res 56:10142–10154

    Article  CAS  Google Scholar 

  • Villaescusa I, Fiol N, Poch J, Bianchi A, Bazzicalupi C (2011) Mechanism of paracetamol removal by vegetable wastes: the contribution of π−π interactions, hydrogen bonding and hydrophobic effect. Desalination 270:135–142

    Article  CAS  Google Scholar 

  • Wang CJ, Li Z, Jiang WT (2011) Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals. Appl Clay Sci 53(4):723–728

    Article  CAS  Google Scholar 

  • Wang Y, Yin T, Kelly BC, Gin KYH (2019) Bioaccumulation behaviour of pharmaceuticals and personal care products in a constructed wetland. Chemosphere 222:275–285

    Article  CAS  Google Scholar 

  • World Health Organization (2016) WHO treatment guidelines for drug-resistant tuberculosis. World Health Organization

    Google Scholar 

  • Wu X, Dodgen LK, Conkle JL, Gan J (2015) Plant uptake of pharmaceutical and personal care products from recycled water and bio-solids: a review. Sci Total Environ 536:655–666

    Article  CAS  Google Scholar 

  • Xiang Y, Xu Z, Wei Y, Zhou Y, Yang X, Yang Y, Yang J, Zhang J, Luo L, Zhou Z (2019) Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors. J Environ Manage 237:128–138

    Article  CAS  Google Scholar 

  • Xu J, Wu L, Chang AC (2009) Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere 77(10):1299–1305

    Article  CAS  Google Scholar 

  • Yi X, Tran NH, Yin T, He Y, Gin KYH (2017) Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res 121:46–60

    Article  CAS  Google Scholar 

  • Zenker A, Cicero MR, Prestinaci F, Bottoni P, Carere M (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage 133:378–387

    Article  CAS  Google Scholar 

  • Zhang Y, Geissen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73(8):1151–1161

    Article  CAS  Google Scholar 

  • Zhang CL, Qiao GL, Zhao F, Wang Y (2011) Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J Mol Liq 163(1):53–56

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang R, Yang X, Qi H, Zhang C (2018) Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharm Anal 9(1):9–19

    Article  Google Scholar 

  • Zhou Y, Cheng G, Chen K, Lu J, Lei J, Pu S (2019a) Adsorptive removal of bisphenol A, chloroxylenol, and carbamazepine from water using a novel β-cyclodextrin polymer. Ecotoxicol Environ Saf 170:278–285

    Article  CAS  Google Scholar 

  • Zhou Y, Lu J, Zhou Y, Liu Y (2019b) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaman, D., Tiwari, M.K., Mishra, S. (2020). Low-Cost Adsorptive Removal Techniques for Pharmaceuticals and Personal Care Products. In: Gupta, T., Singh, S., Rajput, P., Agarwal, A. (eds) Measurement, Analysis and Remediation of Environmental Pollutants. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0540-9_19

Download citation

Publish with us

Policies and ethics