Skip to main content

Measurement, Analysis, and Remediation of Biological Pollutants in Water

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Clean water is vital for supporting human life and the ecosystem. However, the laxity and mismanagement of water resources have endangered the availability of fresh water significantly. Water pollution and associated diseases claim around 2.1 million human lives every year. The outbreak of water-related microbial infections such as diarrhoea, typhoid, and cholera are the primary cause of the loss of lives. Though there has been remarkable progress in the control and prevention of infectious diseases, microbial risks remain a leading cause of human mortality in India, and the rest of the world and children are the worst affected. In this context, a comprehensive analysis of the source, occurrence, fate, and control of biological contaminants in dirking water is of utmost relevance. The rapid and early detection of the pathogenic organism is also of importance in mitigating the menace. This chapter elucidates the growing significance to address the issue of microbial contamination in drinking water and its associated health implications from the past to the present, recent developments in the technologies for the detection, analysis and the remediation of pathogens in the water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Qadiri HM, Al-Alami NI, Al-Holy MA, Rasco BA (2008) Using Fourier transform infrared (FT-IR) absorbance spectroscopy and multivariate analysis to study the effect of chlorine-induced bacterial injury in water. J Agric Food Chem 56(19):8992–8997

    Article  CAS  Google Scholar 

  • Ambriz-Aviña V, Contreras-Garduño JA, Pedraza-Reyes M (2014) Applications of flow cytometry to characterize bacterial physiological responses. BioMed Res Int

    Google Scholar 

  • American Public Health Association, American Water Works Association (1989) Standard methods for the examination of water and wastewater. American Public Health Association

    Google Scholar 

  • Araya V, Maliyekkal SM, Philip L (2019) Water pollution and treatment technologies – Indian perspective. In: Mjumdar PP, Tiwari VM (eds) Water futures of India: Status of science and technology. Indian National Science Academy, pp 215–252.

    Google Scholar 

  • Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11):764–774

    Article  CAS  Google Scholar 

  • Babacan S, Pivarnik P, Letcher S, Rand A (2000) Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens Bioelectron 15(11–12):615–621

    Article  CAS  Google Scholar 

  • Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P (2007) Cellular image analysis and imaging by flow cytometry. Clinics Lab Med 27(3):653–670

    Article  Google Scholar 

  • Blumenthal UJ, Mara DD, Peasey A, Ruiz-Palacios G, Stott R (2000) Guidelines for the microbiological quality of treated wastewater used in agriculture: recommendations for revising WHO guidelines. Bull World Health Organ 78:1104–1116

    CAS  Google Scholar 

  • Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37(1):77–86

    Article  CAS  Google Scholar 

  • Bradburry S (1996) Fluorescence microscopy, contrast techniques in light microscopy

    Google Scholar 

  • Brindha J, Chanda K, Balamurali M (2018) Physical, chemical and biochemical biosensors to detect pathogens. In: Nanotechnology food security and water treatment. Springer, Berlin, pp 53–86

    Google Scholar 

  • Brussaard CP, Marie D, Bratbak G (2000) Flow cytometric detection of viruses. J Virol Methods 85(1–2):175–182

    Article  CAS  Google Scholar 

  • Budu-Amoako E, Greenwood SJ, Dixon BR, Barkema HW, McClure J (2011) Foodborne illness associated with cryptosporidium and Giardia from livestock. J Food Prot 74(11):1944–1955

    Article  Google Scholar 

  • Cangelosi GA, Meschke JS (2014) Dead or alive: molecular assessment of microbial viability. Appl Environ Microbiol 80(19):5884–5891

    Article  CAS  Google Scholar 

  • Chen Q, Lin J, Gan C, Wang Y, Wang D, Xiong Y, Lai W, Li Y, Wang M (2015) A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosens Bioelectron 74:504–511

    Article  CAS  Google Scholar 

  • Clasen TF (2008) Scaling up household water treatment: looking back, seeing forward. In: Public health and the environment, World Health Organization, Geneva

    Google Scholar 

  • Clasen T, Schmidt W-P, Rabie T, Roberts I, Cairncross S (2007) Interventions to improve water quality for preventing diarrhoea: systematic review and meta-analysis. BMJ 334(7597):782

    Article  Google Scholar 

  • Claus D (1992) A standardized Gram staining procedure. World J Microbiol Biotechnol 8(4):451–452

    Article  CAS  Google Scholar 

  • Cotruvo J, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VP, World Health Organization (2004) What are the criteria for determining whether a disease is zoonotic and water related? In: Water borne zoonoses: identification, causes and control. IWA

    Google Scholar 

  • Crane R, Scott T (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  CAS  Google Scholar 

  • Craun GF, Brunkard JM, Yoder JS, Roberts VA, Carpenter J, Wade T, Calderon RL, Roberts JM, Beach MJ, Roy SL (2010) Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clin Microbiol Rev 23(3):507–528

    Article  CAS  Google Scholar 

  • Crittenden JC, Trussell DW, Hand KJ, Howe KJ, Tchobanoglous G (2012) MWH’s water treatment: principles and design. Wiley, New York

    Google Scholar 

  • Das R, Sharma MK, Rao VK, Bhattacharya B, Garg I, Venkatesh V, Upadhyay S (2014) An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode. J Biotechnol 188:9–16

    Article  CAS  Google Scholar 

  • De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2010) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76(4):1082–1087

    Article  CAS  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50(4):227–230

    Article  CAS  Google Scholar 

  • Dey S (2015) 80% of India’s surface water may be polluted, report by international says. Times of India

    Google Scholar 

  • Dey NC, Saha R, Parvez M, Bala SK, Islam AS, Paul JK, Hossain M (2017) Sustainability of groundwater use for irrigation of dry-season crops in northwest Bangladesh. Groundwater Sustain Develop 4:66–77

    Article  Google Scholar 

  • Díaz M, Herrero M, García LA, Quirós C (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 48(3):385–407

    Article  CAS  Google Scholar 

  • Dimitroula H, Daskalaki VM, Frontistis Z, Kondarides DI, Panagiotopoulou P, Xekoukoulotakis NP, Mantzavinos D (2012) Solar photocatalysis for the abatement of emerging micro-contaminants in wastewater: synthesis, characterization and testing of various TiO2 samples. Appl Catal B 117:283–291

    Article  CAS  Google Scholar 

  • Dogan Ü, Kasap E, Cetin D, Suludere Z, Boyaci IH, Türkyılmaz C, Ertas N, Tamer U (2016) Rapid detection of bacteria based on homogenous immunoassay using chitosan modified quantum dots. Sens Actuators B Chem 233:369–378

    Article  CAS  Google Scholar 

  • Douterelo I, Husband S, Boxall J (2014) The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system. Water Res 54:100–114

    Article  CAS  Google Scholar 

  • Du Preez M, McGuigan KG, Conroy RM (2010) Solar disinfection of drinking water in the prevention of dysentery in South African children aged under 5 years: the role of participant motivation. Environ Sci Technol 44(22):8744–8749

    Article  CAS  Google Scholar 

  • Dubelaar G, Gerritzen P (2000) CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Scientia Marina 64(2):255–265

    Article  Google Scholar 

  • Dulbecco R, Vogt M (1953) Some problems of animal virology as studied by the plaque technique. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • EPA (1996) National primary drinking water regulations, Monitoring requirements for public drinking water supplies. Final rule. Federal Register 61(94)

    Google Scholar 

  • EPA (2011) Water treatment manual: disinfection, 2011

    Google Scholar 

  • Faures J, Eliasson A, Hoogeveen J, Vallee D (2001) AQUASTAT-FAO’s information system on water and agriculture. GRID-Magazine of the IPTRID Network (FAO/United Kingdom)

    Google Scholar 

  • Feachem R, Mara DD, Bradley DJ (1983) Sanitation and disease. Wiley, Washington DC

    Google Scholar 

  • Fewtrell L, Kaufmann RB, Kay D, Enanoria W, Haller L, Colford JM Jr (2005) Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis. Lancet Infect Dis 5(1):42–52

    Article  Google Scholar 

  • Fung DY, Miller RD (1970) Rapid procedure for the detection of acid and gas production by bacterial cultures. Appl Microbiol 20(3):527

    CAS  Google Scholar 

  • Ganguly A, Trinh P, Ramanujachary K, Ahmad T, Mugweru A, Ganguli AK (2011) Reverse micellar based synthesis of ultrafine MgO nanoparticles (8–10 nm): characterization and catalytic properties. J Colloid Interface Sci 353(1):137–142

    Article  CAS  Google Scholar 

  • Garibyan L, Avashia N (2013) Research techniques made simple: polymerase chain reaction (PCR). J Invest Dermatol 133(3):e6

    Article  CAS  Google Scholar 

  • Gassie LW, Englehardt JD, Wang J, Brinkman N, Garland J, Gardinali P, Guo T (2016) Mineralizing urban net-zero water treatment: Phase II field results and design recommendations. Water Res 105:496–506

    Article  CAS  Google Scholar 

  • Giannakis S, Voumard M, Rtimi S, Pulgarin C (2018) Bacterial disinfection by the photo-Fenton process: extracellular oxidation or intracellular photo-catalysis? Appl Catal B 227:285–295

    Article  CAS  Google Scholar 

  • Gowrisankar G, Chelliah R, Ramakrishnan SR, Elumalai V, Dhanamadhavan S, Brindha K, Antony U, Elango L (2017) Chemical, microbial and antibiotic susceptibility analyses of groundwater after a major flood event in Chennai. Scientific data 4:170135

    Article  CAS  Google Scholar 

  • Hammes FA, Egli T (2005) New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum. Environ Sci Technol 39(9):3289–3294

    Article  CAS  Google Scholar 

  • Hammes F, Egli T (2010) Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications. Anal Bioanal Chem 397(3):1083–1095

    Article  CAS  Google Scholar 

  • Hossain F, Perales-Perez OJ, Hwang S, Roman F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466:1047–1059

    Article  CAS  Google Scholar 

  • Jamieson RC, Gordon RJ, Tattrie SC, Stratton GW (2003) Sources and persistence of fecal coliform bacteria in a rural watershed. Water Qual Res J 38(1):33–47

    Article  CAS  Google Scholar 

  • Kanungo S, Sah B, Lopez A, Sung J, Paisley A, Sur D, Clemens J, Nair GB (2010) Cholera in India: an analysis of reports, 1997–2006. Bull World Health Organ 88:185–191

    Article  CAS  Google Scholar 

  • Karumuri AK, Oswal DP, Hostetler HA, Mukhopadhyay SM (2013) Silver nanoparticles attached to porous carbon substrates: robust materials for chemical-free water disinfection. Mater Lett 109:83–87

    Article  CAS  Google Scholar 

  • Keane DA, McGuigan KG, Ibáñez PF, Polo-López MI, Byrne JA, Dunlop PS, O’Shea K, Dionysiou DD, Pillai SC (2014) Solar photocatalysis for water disinfection: materials and reactor design. Catal Sci Technol 4(5):1211–1226

    Article  CAS  Google Scholar 

  • Keevil C (2003) Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol 47(5):105–116

    Article  CAS  Google Scholar 

  • Kittigul L, Khamoun P, Sujirarat D, Utrarachkij F, Chitpirom K, Chaichantanakit N, Vathanophas K (2001) An improved method for concentrating rotavirus from water samples. Mem Inst Oswaldo Cruz 96(6):815–821

    Article  CAS  Google Scholar 

  • Kooij D (1992) Assimilable organic carbon as an indicator of bacterial regrowth. J Am Water Works Assoc 84(2): 57–65

    Article  Google Scholar 

  • Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS (2019) A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 9(16):8778–8881

    Article  CAS  Google Scholar 

  • Kumar N, Hu Y, Singh S, Mizaikoff B (2018) Emerging biosensor platforms for the assessment of water-borne pathogens. Analyst 143(2):359–373

    Article  CAS  Google Scholar 

  • Laczka O, Skillman L, Ditcham WG, Hamdorf B, Wong DK, Bergquist P, Sunna A (2013) Application of an ELISA-type screen printed electrode-based potentiometric assay to the detection of Cryptosporidium parvum oocysts. J Microbiol Methods 95(2):182–185

    Article  CAS  Google Scholar 

  • Lantagne D, Meierhofer R, Allgood G, McGuigan K, Quick R (2008) Comment on “Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world”. Environ Sci Technol 43(3):968–969

    Article  CAS  Google Scholar 

  • Law JWF, Ab Mutalib NS, Chan K-G, Lee L-H (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770

    Google Scholar 

  • Lee-Montiel FT, Reynolds KA, Riley MR (2011) Detection and quantification of poliovirus infection using FTIR spectroscopy and cell culture. Journal of biological engineering 5(1):16

    Article  CAS  Google Scholar 

  • Leininger DJ, Roberson JR, Elvinger F (2001) Use of eosin methylene blue agar to differentiate Escherichia coli from other gram-negative mastitis pathogens. J Vet Diagn Invest 13(3):273–275

    Article  CAS  Google Scholar 

  • Li X, Cai M, Wang L, Niu F. Yang D, Zhang G (2018) Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Sci Total Environ

    Google Scholar 

  • Logan JO, Savell WL (1940) Calcium hypochlorite in water purification. J (Am Water Works Assoc) 32(9):1517–1527

    Article  CAS  Google Scholar 

  • Loo S-L, Fane AG, Lim T-T, Krantz WB, Liang Y-N, Liu X, Hu X (2013) Superabsorbent cryogels decorated with silver nanoparticles as a novel water technology for point-of-use disinfection. Environ Sci Technol 47(16):9363–9371

    Article  CAS  Google Scholar 

  • Ma X, Cui Y, Qiu Z, Zhang B, Cui S (2013) A nanoparticle-assisted PCR assay to improve the sensitivity for rapid detection and differentiation of wild-type pseudorabies virus and gene-deleted vaccine strains. J Virol Methods 193(2):374–378

    Article  CAS  Google Scholar 

  • Machell J, Mounce S, Boxall J (2010) Online modelling of water distribution systems: a UK case study. Drinking Water Eng Sci 3:21–27

    Article  Google Scholar 

  • Manafi M, Kneifel W (1989) A combined chromogenic-fluorogenic medium for the simultaneous detection of coliform groups and E. coli in water. Int J Hygiene Environ Med 189(3): 225–234

    Google Scholar 

  • March SB, Ratnam S (1986) Sorbitol-MacConkey medium for detection of Escherichia coli O157: H7 associated with hemorrhagic colitis. J Clin Microbiol 23(5):869–872

    CAS  Google Scholar 

  • Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29(1–2):211–214

    Article  CAS  Google Scholar 

  • Mattison K, Bidawid S (2009) Analytical methods for food and environmental viruses. Food Environ Virol 1(3–4):107–122

    Article  Google Scholar 

  • McGuigan KG, Conroy RM, Mosler H-J, du Preez M, Ubomba-Jaswa E, Fernandez-Ibanez P (2012) Solar water disinfection (SODIS): a review from bench-top to roof-top. J Hazard Mater 235:29–46

    Article  CAS  Google Scholar 

  • McPherson M, Møller S (2000) Pcr. Taylor & Francis, New York

    Google Scholar 

  • Metcalf, L., Wastewater engineering: treatment and reuse. Metcalf & Eddy Inc. 2003, McGraw-Hill Inc., New York

    Google Scholar 

  • Microbiology L.l (2019) Staining microscopic specimens. cited 29 May 2019. Available from: https://courses.lumenlearning.com/microbiology/chapter/staining-microscopic-specimens/

  • Milbury CA, Li J, Liu P, Makrigiorgos GM (2011) COLD-PCR: improving the sensitivity of molecular diagnostics assays. Expert Rev Mol Diagn 11(2):159–169

    Article  CAS  Google Scholar 

  • Munoz EF, Silverman MP (1979) Rapid, single-step most-probable-number method for enumerating fecal coliforms in effluents from sewage treatment plants. Appl Environ Microbiol 37(3):527–530

    CAS  Google Scholar 

  • Murty M, Kumar S (2011) Water pollution in India: an economic appraisal. India infrastructure report. Water: policy and performance for sustainable development

    Google Scholar 

  • National Research Council (US) Safe Drinking Water Committee (1980) Drinking water and health: the disinfection of drinking water. National Academies Press (US), New York

    Google Scholar 

  • Nyangaresi PO, Qin Y, Chen G, Zhang B, Lu Y, Shen L (2018) Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water. Catalysis Today

    Google Scholar 

  • Orpana AK, Ho TH, Alagrund K, Ridanpää M, Aittomäki K, Stenman J (2013) Novel Heat pulse extension-PCR–based method for detection of large CTG-repeat expansions in myotonic dystrophy type 1. J Mol Diagn 15(1):110–115

    Article  CAS  Google Scholar 

  • Pandey PK, Soupir ML (2013) Assessing the impacts of E. coli laden streambed sediment on E. coli loads over a range of flows and sediment characteristics. JAWRA J Am Water Resour Assoc 49(6):1261–1269

    Article  Google Scholar 

  • Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP (2014) Contamination of water resources by pathogenic bacteria. Amb Express 4(1):51

    Article  Google Scholar 

  • Pham NTK, Trinh QD, Chan-It W, Khamrin P, Shimizu H, Okitsu S, Mizuguchi M, Ushijima H (2010) A novel RT-multiplex PCR for detection of Aichi virus, human parechovirus, enteroviruses, and human bocavirus among infants and children with acute gastroenteritis. J Virol Methods 169(1):193–197

    Article  CAS  Google Scholar 

  • Planning Commission (2002) Report of the screening commitee on drinking water supply and sanitation (Rural and Urban) for tenth five year plan. P. Commision, New Delhi, India

    Google Scholar 

  • Pradeep T (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517(24):6441–6478

    Article  CAS  Google Scholar 

  • Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J (2019) A review of methods for the detection of pathogenic microorganisms. Analyst 144(2):396–411

    Article  CAS  Google Scholar 

  • Rakić A (2018) Water quality control in the water supply system for the purpose of preventing legionnaires’ disease. In: Water challenges of an urbanizing world. IntechOpen

    Google Scholar 

  • Rein DB, Stevens GA, Theaker J, Wittenborn JS, Wiersma ST (2012) The global burden of hepatitis E virus genotypes 1 and 2 in 2005. Hepatology 55(4):988–997

    Article  Google Scholar 

  • Rhodes MW, Kator HI (1990) Effects of sunlight and autochthonous microbiota on Escherichia coli survival in an estuarine environment. Curr Microbiol 21(1):65–73

    Article  Google Scholar 

  • Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J (2003) AB cell-based sensor for rapid identification of pathogens. Science 301(5630):213–215

    Article  CAS  Google Scholar 

  • Rivera-Jaimes JA, Postigo C, Melgoza-Alemán RM, Aceña J, Barceló D, de Alda ML (2018) Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: occurrence and environmental risk assessment. Sci Total Environ 613:1263–1274

    Article  CAS  Google Scholar 

  • Rose A, Roy S, Abraham V, Holmgren G, George K, Balraj V, Abraham S, Muliyil J, Joseph A, Kang G (2006) Solar disinfection of water for diarrhoeal prevention in southern India. Arch Dis Child 91(2):139–141

    Article  CAS  Google Scholar 

  • Rossi F, Kylián O, Rauscher H, Hasiwa M, Gilliland D (2009) Low pressure plasma discharges for the sterilization and decontamination of surfaces. New J Phys 11(11):115017

    Article  CAS  Google Scholar 

  • Roth S, Feichtinger J, Hertel C (2010) Characterization of Bacillus subtilis spore inactivation in low-pressure, low-temperature gas plasma sterilization processes. J Appl Microbiol 108(2):521–531

    Article  CAS  Google Scholar 

  • Safavieh M, Ahmed MU, Sokullu E, Ng A, Braescu L, Zourob M (2014) A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection. Analyst 139(2):482–487

    Article  CAS  Google Scholar 

  • Saha R, Dey NC, Rahman S, Galagedara L, Bhattacharya P (2018) Exploring suitable sites for installing safe drinking water wells in coastal Bangladesh. Groundwater for Sustainable Development 7:91–100

    Article  Google Scholar 

  • Sankar MU, Aigal S, Maliyekkal SM, Chaudhary A, Kumar AA, Chaudhari K, Pradeep T (2013) Biopolymer-reinforced synthetic granular nanocomposites for affordable point-of-use water purification. Proc Natl Acad Sci 110(21):8459–8464

    Article  CAS  Google Scholar 

  • Schriewer A, Miller WA, Byrne BA, Miller MA, Oates S, Conrad PA, Hardin D, Yang H-H, Chouicha N, Melli A (2010) Presence of bacteroidales as a predictor of pathogens in surface waters of the central California coast. Appl Environ Microbiol 76(17):5802–5814

    Article  CAS  Google Scholar 

  • Selan L, Berlutti F, Passariello C, Thaller M, Renzini G (1992) Reliability of a bioluminescence ATP assay for detection of bacteria. J Clin Microbiol 30(7):1739–1742

    CAS  Google Scholar 

  • Shaheed A, Orgill J, Montgomery MA, Jeuland MA, Brown J (2014) Why? improved? water sources are not always safe. Bull World Health Organ 92:283–289

    Article  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. In: Nanoscience and technology: a collection of reviews from nature Journals. World Scientific, pp 337–346

    Google Scholar 

  • Sheppard C, Shotton D, Sheppard C (1997) Confocal laser scanning microscopy. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Simoes LC, Simões M (2013) Biofilms in drinking water: problems and solutions. Rsc Adv 3(8):2520–2533

    Article  Google Scholar 

  • Singh RK, Babu V, Philip L, Ramanujam S (2017) Disinfection of water using pulsed power technique: effect of system parameters and kinetic study. In: Sustainability issues in civil engineering. Springe, Berlin, pp 307–336

    Google Scholar 

  • Sobsey MD, Stauber CE, Casanova LM, Brown JM, Elliott MA (2008) Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ Sci Technol 42(12):4261–4267

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    Article  CAS  Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer K-H (2000) Microbiological safety of drinking water. Ann Rev Microbiol 54(1):81–127

    Article  CAS  Google Scholar 

  • Tang P, Wu J, Liu H, Liu Y, Zhou X (2018) Assimilable organic carbon (AOC) determination using GFP-tagged Pseudomonas fluorescens P-17 in water by flow cytometry. PLoS ONE 13(6):e0199193

    Article  CAS  Google Scholar 

  • Tankeshwar (2010) Membrane filter technique for bacteriological examination of water. Cited 26 May 2019. Available from: https://microbeonline.com/membrane-filter-technique/

  • Thakur B, Amarnath CA, Mangoli S, Sawant SN (2015) Polyaniline nanoparticle based colorimetric sensor for monitoring bacterial growth. Sens Actuators B Chem 207:262–268

    Article  CAS  Google Scholar 

  • Trivedi BK, Gandhi HS, Shukla NK (1971) Bacteriological water quality and incidence of water borne diseases in a rural population. Indian J Med Sci 25(11):795–801

    CAS  Google Scholar 

  • Turner DE, Daugherity EK, Altier C, Maurer KJ (2010) Efficacy and limitations of an ATP-based monitoring system. J Am Assoc Lab Anim Sci 49(2):190–195

    CAS  Google Scholar 

  • UN (n.d.) Water scarcity. Available at: http://www.unwater.org/water-facts/scarcity/

  • UN DESA (2018) Revision of World Urbanization Prospects. Cited 27 May 2019. Available at: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html

  • UNESCO (2017) United Nations world water development report. 23 May 2019; at: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/2017-wastewater-the-untapped-resource/

  • UNICEF (2016) One is too many: Ending child deaths from pneumonia and diarrhoea

    Google Scholar 

  • UNICEF (2017) Progress on drinking water, sanitation and hygiene: 2017 update and SDG guidelines

    Google Scholar 

  • USBR (2017) Water facts—worldwide water supply. Available at: https://www.usbr.gov/mp/arwec/water-facts-ww-water-sup.html

  • Vagliasindi FG, Belgiorno V, Napoli RM (1998) Water treatment in remote and rural areas: a conceptual screening protocol for appropriate POU/POE technologies. In: Environmental engineering and renewable energy. Elsevier, London, pp 329–336

    Chapter  Google Scholar 

  • Valones MAA, Guimarães RL, Brandão LAC, Souza PRE, Carvalho AAT, Crovela S (2009) Principles and applications of polymerase chain reaction in medical diagnostic fields: a review. Braz J Microbiol 40(1):1–11

    Article  CAS  Google Scholar 

  • Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22(1):46–56

    Article  Google Scholar 

  • van der Wielen PW, van der Kooij D (2010) Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands. Water Res 44(17):4860–4867

    Article  CAS  Google Scholar 

  • Vandeweerd V, Bernal P, Belfiore S, Goldstein K, Cicin-Sain B (2002) A guide to oceans, coasts, and islands at the World Summit on sustainable development

    Google Scholar 

  • Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28(2):232–254

    Article  CAS  Google Scholar 

  • Venkatesan KD, Balaji M, Victor K (2014) Microbiological analysis of packaged drinking water sold in Chennai. Int J Med Sci Public Health 3(4):472–477

    Article  Google Scholar 

  • Vesey G, Hutton P, Champion A, Ashbolt N, Williams KL, Warton A, Veal D (1994) Application of flow cytometric methods for the routine detection of Cryptosporidium and Giardia in water. Cytometry J Int Soc Anal Cytol 16(1):1–6

    Article  CAS  Google Scholar 

  • Vidic J, Manzano M, Chang C-M, Jaffrezic-Renault N (2017) Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res 48(1):11

    Article  CAS  Google Scholar 

  • Wah TY (2016) Nature-inspired membrane set to reduce purification costs. Membr Technol 2016(5):7

    Article  Google Scholar 

  • Wang Y, Alocilja EC (2015) Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J Biol Eng 9(1):16

    Article  CAS  Google Scholar 

  • Wang L, Wei Q, Wu C, Hu Z, Ji J, Wang P (2008) The Escherichia coli O157: H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Chin Sci Bull 53(8):1175–1184

    CAS  Google Scholar 

  • Wang W, Wang W, Liu L, Xu L, Kuang H, Zhu J, Xu C (2016a) Nanoshell-enhanced Raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing. ACS Appl Mater Interfaces 8:15591–15597

    Article  CAS  Google Scholar 

  • Wang C, Wang J, Li M, Qu X, Zhang K, Rong Z, Xiao R, Wang S (2016b) A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@ Ag nanoparticles. Analyst 141(22):6226–6238

    Article  CAS  Google Scholar 

  • Wingender J, Flemming H-C (2011) Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214(6):417–423

    Article  Google Scholar 

  • Wolf S, Hewitt J, Rivera-Aban M, Greening GE (2008) Detection and characterization of F + RNA bacteriophages in water and shellfish: application of a multiplex real-time reverse transcription PCR. J Virol Methods 149(1):123–128

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2001) Water for health: taking charge

    Google Scholar 

  • World Health Organization (WHO) (2004) Water, sanitation and hygiene links to health: facts and figures

    Google Scholar 

  • World Health Organization (WHO) (2007) Outbreak of water borne diseases. Cited 27 May 2019. Available from: http://www.euro.who.int/__data/assets/pdf_file/0006/97359/1.1.pdf?ua=1

  • World Health Organization (WHO) (2011) Guidelines for drinking-water quality. WHO Chron 38(4):104–108

    Google Scholar 

  • World Health Organization (WHO) (2016) Number of reported cholera cases. Cited 23 May 2019. Available at: https://www.who.int/gho/epidemic_diseases/cholera/cases_text/en/

  • Xu M, Wang R, Li Y (2016) An electrochemical biosensor for rapid detection of E. coli O157: H7 with highly efficient bi-functional glucose oxidase-polydopamine nanocomposites and Prussian blue modified screen-printed interdigitated electrodes. Analyst 141(18):5441–5449

    Article  CAS  Google Scholar 

  • Yahya HSA, Jilali A, Mostareh MMM, Chafik Z, Chafi A (2017) Microbiological, physicochemical, and heavy metals assessment of groundwater quality in the Triffa plain (eastern Morocco). Applied Water Science 7(8):4497–4512

    Article  CAS  Google Scholar 

  • Zourob M, Elwary S, Turner AP (2008) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer Science & Business Media, Berlin

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the Government of India, Ministry of Science and Technology, Department of Science and Technology (DST), Technology Mission Division [Grant no: DST/TM/WTI/WIC/2K17/82(C)] for supporting the work. The author Uthradevi Kannan acknowledges DST—Innovation in Science Pursuit for Inspire Research (INSPIRE), [IF 160288] for the fellowship support to pursue PhD at IIT Tirupati. The authors also thank IIT Tirupati for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihabudheen M. Maliyekkal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannan, U., Krishna Prashanth, S., M. Maliyekkal, S. (2020). Measurement, Analysis, and Remediation of Biological Pollutants in Water. In: Gupta, T., Singh, S., Rajput, P., Agarwal, A. (eds) Measurement, Analysis and Remediation of Environmental Pollutants. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0540-9_11

Download citation

Publish with us

Policies and ethics