Skip to main content

Long-Term Implications of Developmental Programming and Obesity

  • Chapter
  • First Online:
Health Impacts of Developmental Exposure to Environmental Chemicals

Abstract

There is a global obesity pandemic. The prevailing theory is that obesity is the result of overeating and lack of exercise. However, the imbalance of calorie consumption and exercise per se cannot explain the reasons for the obesity epidemic. The susceptibility to obesity, like many noncommunicable diseases, has been shown to start during development due to poor nutrition, stress, or exposure to environmental chemicals. The subclass of environmental chemicals that can increase the susceptibility to obesity following exposure in utero or early life are called obesogens. There are now significant animal and human data indicating a role for obesogens in the obesity pandemic. This review presents an overview of the importance of exposure to obesogens in the etiology of obesity. The possibility of reducing exposures to obesogens during development could lead to a focus on prevention of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief. 2015;219:1–8.

    Google Scholar 

  2. Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.

    Article  PubMed  Google Scholar 

  3. Almeda-Valdes P, Aguilar-Salinas CA, Uribe M, Canizales-Quinteros S, Méndez-Sánchez N. Impact of anthropometric cut-off values in determining the prevalence of metabolic alterations. Eur J Clin Investig. 2016;46(11):940–6.

    Article  Google Scholar 

  4. Legler J, et al. The OBELIX project: early life exposure to endocrine disruptors and obesity. Am J Clin Nutr. 2011;94(6 Suppl):1933s–8s.

    Article  CAS  PubMed  Google Scholar 

  5. Cawley J, Meyerhoefer C. The medical care costs of obesity: an instrumental variables approach. J Health Econ. 2012;31(1):219–30.

    Article  PubMed  Google Scholar 

  6. McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, et al. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49(10):868–913.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, Despres JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev Dis Primers. 2017;3:17034.

    Article  PubMed  Google Scholar 

  8. Campbell Am LV. Genetics of obesity. Aust Fam Physician. 2017;46(7):456–9.

    PubMed  Google Scholar 

  9. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aguilera CM, Olza J, Gil A. Genetic susceptibility to obesity and metabolic syndrome in childhood. Nutricion hospitalaria. 2013;28(Suppl 5):44–55.

    CAS  PubMed  Google Scholar 

  11. Milagro FI, Moreno-Aliaga MJ, Martinez JA. FTO Obesity variant and adipocyte Browning in humans. N Engl J Med. 2016;374(2):190–1.

    Article  PubMed  Google Scholar 

  12. Serretti A, Mandelli L. Antidepressants and body weight: a comprehensive review and meta-analysis. J Clin Psychiatry. 2010;71(10):1259–72.

    Article  PubMed  Google Scholar 

  13. Verhaegen AA, Van Gaal LF. Drug-induced obesity and its metabolic consequences: a review with a focus on mechanisms and possible therapeutic options. J Endocrinol Investig. 2017;40:1165–74.

    Article  CAS  Google Scholar 

  14. McCloughen A, Foster K. Weight gain associated with taking psychotropic medication: an integrative review. Int J Ment Health Nurs. 2011;20(3):202–22.

    Article  PubMed  Google Scholar 

  15. Medici V, McClave SA, Miller KR. Common medications which Lead to unintended alterations in weight gain or organ lipotoxicity. Curr Gastroenterol Rep. 2016;18(1):2.

    Article  PubMed  Google Scholar 

  16. Christ-Crain M, Kola B, Lolli F, Fekete C, Seboek D, Wittmann G, et al. AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome. FASEB J. 2008;22(6):1672–83.

    Article  CAS  PubMed  Google Scholar 

  17. Xu MY, Cao B, Wang DF, Guo JH, Chen KL, Shi M, et al. Human adenovirus 36 infection increased the risk of obesity: a meta-analysis update. Medicine. 2015;94(51):e2357.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shang Q, Wang H, Song Y, Wei L, Lavebratt C, Zhang F, et al. Serological data analyses show that adenovirus 36 infection is associated with obesity: a meta-analysis involving 5739 subjects. Obesity (Silver Spring). 2014;22(3):895–900.

    Article  Google Scholar 

  19. Hainer V, Zamrazilova H, Kunesova M, Bendlova B, Aldhoon-Hainerova I. Obesity and infection: reciprocal causality. Physiol Res. 2015;64(Suppl 2):S105–19.

    CAS  PubMed  Google Scholar 

  20. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214.

    Article  PubMed  CAS  Google Scholar 

  21. Li J, Riaz Rajoka MS, Shao D, Jiang C, Jin M, Huang Q, et al. Strategies to increase the efficacy of using gut microbiota for the modulation of obesity. Obes Rev. 2017;18:1260–71.

    Article  CAS  PubMed  Google Scholar 

  22. Korpela K, de Vos WM. Antibiotic use in childhood alters the gut microbiota and predisposes to overweight. Microb Cell. 2016;3(7):296–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mbakwa CA, Penders J, Savelkoul PH, Thijs C, Dagnelie PC, Mommers M, et al. Gut colonization with methanobrevibacter smithii is associated with childhood weight development. Obesity (Silver Spring). 2015;23(12):2508–16.

    Article  Google Scholar 

  24. Kim J, Peterson KE, Scanlon KS, Fitzmaurice GM, Must A, Oken E, et al. Trends in overweight from 1980 through 2001 among preschool-aged children enrolled in a health maintenance organization. Obesity (Silver Spring). 2006;14(7):1107–12.

    Article  Google Scholar 

  25. Lustig RH. The neuroendocrinology of obesity. Endocrinol Metab Clin N Am. 2001;30(3):765–85.

    Article  CAS  Google Scholar 

  26. Brown RE, Sharma AM, Ardern CI, Mirdamadi P, Mirdamadi P, Kuk JL. Secular differences in the association between caloric intake, macronutrient intake, and physical activity with obesity. Obes Res Clin Pract. 2016;10(3):243–55.

    Article  PubMed  Google Scholar 

  27. Nadal A. Obesity fat from plastics? Linking bisphenol A exposure and obesity. Nat Rev Endocrinol. 2012;9:9–10.

    Article  PubMed  CAS  Google Scholar 

  28. Darbre PD. Endocrine disruptors and obesity. Curr Obes Rep. 2017;6:18–27.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Hollis-Hansen K, Ren X, Qiu Y, Qu W. Do environmental pollutants increase obesity risk in humans? Obes Rev. 2016;17(12):1179–97.

    Article  CAS  PubMed  Google Scholar 

  30. Heindel JJ, Blumberg B. Environmental obesogens: mechanisms and controversies. Annu Rev Pharmacol Toxicol. 2018;59:89–106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33.

    Article  CAS  PubMed  Google Scholar 

  32. Le Magueresse-Battistoni B, Labaronne E, Vidal H, Naville D. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem. 2017;8(2):108–19.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nappi F, Barrea L, Di Somma C, Savanelli MC, Muscogiuri G, Orio F, et al. Endocrine aspects of environmental “Obesogen” pollutants. Int J Environ Res Public Health. 2016;13(8):765.

    Article  PubMed Central  CAS  Google Scholar 

  34. Veiga-Lopez A, Pu Y, Gingrich J, Padmanabhan V. Obesogenic endocrine disrupting chemicals: identifying knowledge gaps. Trends Endocrinol Metab. 2018;29(9):607–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heindel JJ, Balbus J, Birnbaum L, Brune-Drisse MN, Grandjean P, Gray K, et al. Developmental origins of health and disease: integrating environmental influences. Endocrinology. 2015;156(10):3416–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eriksson JG. Developmental origins of health and disease - from a small body size at birth to epigenetics. Ann Med. 2016;48(6):456–67.

    Article  PubMed  Google Scholar 

  37. Regnier SM, El-Hashani E, Kamau W, Zhang X, Massad NL, Sargis RM. Tributyltin differentially promotes development of a phenotypically distinct adipocyte. Obesity (Silver Spring). 2015;23(9):1864–71.

    Article  CAS  Google Scholar 

  38. Chamorro-Garcia R, Diaz-Castillo C, Shoucri BM, Kach H, Leavitt R, Shioda T, et al. Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice. Nat Commun. 2017;8(1):2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Shoucri BM, Hung VT, Chamorro-Garcia R, Shioda T, Blumberg B. Retinoid X receptor activation during adipogenesis of female mesenchymal stem cells programs a dysfunctional adipocyte. Endocrinology. 2018;159:2863–83.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ariemma F, D’Esposito V, Liguoro D, Oriente F, Cabaro S, Liotti A, et al. Low-dose Bisphenol-A impairs Adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS One. 2016;11(3):e0150762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Heindel JJ, Skalla LA, Joubert BR, Dilworth CH, Gray KA. Review of developmental origins of health and disease publications in environmental epidemiology. Reprod Toxicol. 2017;68:34–48.

    Article  CAS  PubMed  Google Scholar 

  42. Loche E, Ozanne SE. Non-genetic transmission of obesity: It’s in your Epigenes. Trends Endocrinol Metab. 2016;27(6):349–50.

    Article  CAS  PubMed  Google Scholar 

  43. Kappil M, Chen J. Environmental exposures in utero and microRNA. Curr Opin Pediatr. 2014;26(2):243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Braun JM. Pre-conception susceptibility to endocrine disruptors. Nat Rev Endocrinol. 2018;14:505–6.

    Article  PubMed  Google Scholar 

  45. Grandjean P, Barouki R, Bellinger DC, Casteleyn L, Chadwick LH, Cordier S, et al. Life-long implications of developmental exposure to environmental stressors: new perspectives. Endocrinology. 2015;156(10):3408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Godfrey KM, Costello PM, Lillycrop KA. Development, epigenetics and metabolic programming. Nestle Nutr Inst Workshop Ser. 2016;85:71–80.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hanson MA, Gluckman PD. Developmental origins of health and disease: global public health implications. Best Pract Res Clin Obstet Gynaecol. 2014;29:24–31.

    Article  PubMed  Google Scholar 

  48. Tournaire M, Epelboin S, Devouche E, Viot G, Le Bidois J, Cabau A, et al. Adverse health effects in children of women exposed in utero to diethylstilbestrol (DES). Therapie. 2016;71(4):395–404.

    Article  PubMed  Google Scholar 

  49. Newbold RR. Prenatal exposure to diethylstilbestrol (DES). Fertil Steril. 2008;89(2):e55–e6.

    Article  PubMed  Google Scholar 

  50. Grun F. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol. 2006;20:2141–55.

    Article  CAS  PubMed  Google Scholar 

  51. Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002;8(2):185–92.

    Article  PubMed  Google Scholar 

  52. Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS. Exposure to bisphenol A advances puberty. Nature. 1999;401(6755):763–4.

    Article  CAS  PubMed  Google Scholar 

  53. Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001;109(7):675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Swedenborg E, Ruegg J, Makela S, Pongratz I. Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endocrinol. 2009;43(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  55. La Merrill M, Birnbaum LS. Childhood obesity and environmental chemicals. Mt Sinai J Med. 2011;78(1):22–48.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol. 2017;13(3):161–73.

    Article  CAS  PubMed  Google Scholar 

  57. Oken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes. 2007;32(2):201–10.

    Article  Google Scholar 

  58. Behl M, Rao D, Aagaard K, Davidson TL, Levin ED, Slotkin TA, et al. Evaluation of the association between maternal smoking, childhood obesity, and metabolic disorders: a national toxicology program workshop review. Environ Health Perspect. 2013;121(2):170–80.

    Article  PubMed  Google Scholar 

  59. Mendez MA, Torrent M, Ferrer C, Ribas-Fito N, Sunyer J. Maternal smoking very early in pregnancy is related to child overweight at age 5–7 years. Am J Clin Nutr. 2008;87(6):1906–13.

    Article  CAS  PubMed  Google Scholar 

  60. Somm E, Schwitzgebel VM, Vauthay DM, Camm EJ, Chen CY, Giacobino JP, et al. Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology. 2008;149(12):6289–99.

    Article  CAS  PubMed  Google Scholar 

  61. Fan J, W-X Z, Y-S R, J-L X, F-F W, Zhang L, et al. Perinatal nicotine exposure increases Obesity susceptibility in adult male rat offspring by altering early adipogenesis. Endocrinology. 2016;157(11):4276–86.

    Article  CAS  PubMed  Google Scholar 

  62. Bourez S, Le Lay S, Van den Daelen C, Louis C, Larondelle Y, Thomé J-P, et al. Accumulation of polychlorinated biphenyls in adipocytes: selective targeting to lipid droplets and role of Caveolin-1. PLoS One. 2012;7(2):e31834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. La Merrill M, Emond C, Kim MJ, Antignac J-P, Le Bizec B, Clément K, et al. Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ Health Perspect. 2013;121(2):162–9.

    Article  PubMed  CAS  Google Scholar 

  64. Lee DH, Porta M, Jacobs DR Jr, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev. 2014;35(4):557–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock E-J, Lillefosse H, et al. Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect. 2010;118(4):465–71.

    Article  CAS  PubMed  Google Scholar 

  66. Ibrahim MM, Fjære E, Lock E-J, Naville D, Amlund H, Meugnier E, et al. Chronic consumption of farmed Salmon containing persistent organic pollutants causes insulin resistance and Obesity in mice. PLoS One. 2011;6(9):e25170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hong NS, Kim KS, Lee IK, Lind PM, Lind L, Jacobs DR, et al. The association between obesity and mortality in the elderly differs by serum concentrations of persistent organic pollutants: a possible explanation for the obesity paradox. Int J Obes. 2012;36(9):1170–5.

    Article  CAS  Google Scholar 

  68. Lee YM, Kim KS, Jacobs DR Jr, Lee DH. Persistent organic pollutants in adipose tissue should be considered in obesity research. Obes Rev. 2017;18(2):129–39.

    Article  PubMed  Google Scholar 

  69. Cheikh Rouhou M, Karelis AD, St-Pierre DH, Lamontagne L. Adverse effects of weight loss: are persistent organic pollutants a potential culprit? Diabetes Metab. 2016;42:215–23.

    Article  CAS  PubMed  Google Scholar 

  70. Eskenazi B, Chevrier J, Rosas LG, Anderson HA, Bornman MS, Bouwman H, et al. The Pine River statement: human health consequences of DDT use. Environ Health Perspect. 2009;117(9):1359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsu W-W, Rose Osuch J, Todem D, Taffe B, O’Keefe M, Adera S, et al. DDE and PCB serum concentration in maternal blood and their adult female offspring. Environ Res. 2014;132:384–90.

    Article  CAS  PubMed  Google Scholar 

  72. Karmaus W, Osuch JR, Eneli I, Mudd LM, Zhang J, Mikucki D, et al. Maternal levels of dichlorodiphenyl-dichloroethylene (DDE) may increase weight and body mass index in adult female offspring. Occup Environ Med. 2009;66(3):143–9.

    Article  CAS  PubMed  Google Scholar 

  73. Mendez MA, Garcia-Esteban R, Guxens M, Vrijheid M, Kogevinas M, Goni F, et al. Prenatal organochlorine compound exposure, rapid weight gain, and overweight in infancy. Environ Health Perspect. 2011;119(2):272–8.

    Article  CAS  PubMed  Google Scholar 

  74. Delvaux I, Van Cauwenberghe J, Den Hond E, Schoeters G, Govarts E, Nelen V, et al. Prenatal exposure to environmental contaminants and body composition at age 7-9 years. Environ Res. 2014;132:24–32.

    Article  CAS  PubMed  Google Scholar 

  75. Warner M, Wesselink A, Harley KG, Bradman A, Kogut K, Eskenazi B. Prenatal exposure to dichlorodiphenyltrichloroethane and obesity at 9 years of age in the CHAMACOS study cohort. Am J Epidemiol. 2014;179(11):1312–22.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagana X, Robinson O, et al. Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: a multi-pollutant approach. Environ Health Perspect. 2015;123(10):1030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Iszatt N, Stigum H, Verner MA, White RA, Govarts E, Murinova LP, et al. Prenatal and postnatal exposure to persistent organic pollutants and infant growth: a pooled analysis of seven European birth cohorts. Environ Health Perspect. 2015;123(7):730–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. La Merrill M, Karey E, Moshier E, Lindtner C, La Frano MR, Newman JW, et al. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One. 2014;9(7):e103337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ibrahim MM, Fjære E, Lock E-J, Frøyland L, Jessen N, Lund S, et al. Metabolic impacts of high dietary exposure to persistent organic pollutants in mice. Toxicol Lett. 2012;215:8–15.

    Article  CAS  PubMed  Google Scholar 

  80. Moreno-Aliaga MJ, Matsumura F. Effects of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (p,p′-DDT) on 3T3-L1 and 3T3-F442A adipocyte differentiation. Biochem Pharmacol. 2002;63(5):997–1007.

    Article  CAS  PubMed  Google Scholar 

  81. Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M, Nilsson EE. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 2013;11:228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7(4):513–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S, et al. The navigation guide - evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122(10):1040–51.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Joca L, Sacks JD, Moore D, Lee JS, Sams Ii R, Cowden J. Systematic review of differential inorganic arsenic exposure in minority, low-income, and indigenous populations in the United States. Environ Int. 2016;92–93:707–15.

    Article  PubMed  CAS  Google Scholar 

  85. Johnson PI, Koustas E, Vesterinen HM, Sutton P, Atchley DS, Kim AN, et al. Application of the navigation guide systematic review methodology to the evidence for developmental and reproductive toxicity of Triclosan. Environ Int. 2016;92-93:716–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu P, Yang F, Wang Y, Yuan Z. Perfluorooctanoic acid (PFOA) exposure in early life increases risk of childhood adiposity: a meta-analysis of prospective cohort studies. Int J Environ Res Public Health. 2018;15(10):E2070.

    Article  PubMed  CAS  Google Scholar 

  87. Halldorsson TI, Rytter D, Haug LS, Bech BH, Danielsen I, Becher G, et al. Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study. Environ Health Perspect. 2012;120:668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hines EP, White SS, Stanko JP, Gibbs-Flournoy EA, Lau C, Fenton SE. Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: low doses induce elevated serum leptin and insulin, and overweight in mid-life. Mol Cell Endocrinol. 2009;304(1–2):97–105.

    Article  CAS  PubMed  Google Scholar 

  89. Qi W, Clark JM, Timme-Laragy AR, Park Y. Perfluorobutanesulfonic acid (PFBS) potentiates adipogenesis of 3T3-L1 adipocytes. Food Chem Toxicol. 2018;120:340–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sant KE, Venezia OL, Sinno PP, Timme-Laragy AR. Perfluorobutanesulfonic acid disrupts pancreatic organogenesis and regulation of lipid metabolism in the zebrafish, Danio rerio. Toxicol Sci. 2018;167:258–68.

    Article  CAS  PubMed Central  Google Scholar 

  91. Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci. 2006;92(2):476–89.

    Article  Google Scholar 

  92. Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA. Polychlorinated Biphenyl-77 induces adipocyte differentiation and Proinflammatory Adipokines and promotes Obesity and atherosclerosis. Environ Health Perspect. 2008;116(6):761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009;119(4):538–46.

    Article  CAS  PubMed  Google Scholar 

  94. Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T, et al. Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. Arterioscler Thromb Vasc Biol. 2010;30(12):2518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bolton JL, Auten RL, Bilbo SD. Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring. Brain Behav Immun. 2014;37:30–44.

    Article  CAS  PubMed  Google Scholar 

  96. Weldy CS, Liu Y, Liggitt HD, Chin MT. In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice. PLoS One. 2014;9(2):e88582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Ortiz L, Nakamura B, Li X, Blumberg B, Luderer U. In utero exposure to benzo[a]pyrene increases adiposity and causes hepatic steatosis in female mice, and glutathione deficiency is protective. Toxicol Lett. 2013;223(2):260–7.

    Article  CAS  PubMed  Google Scholar 

  98. Irigaray P, Ogier V, Jacquenet S, Notet V, Sibille P, Mejean L, et al. Benzo[a]pyrene impairs beta-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice. A novel molecular mechanism of toxicity for a common food pollutant. FEBS J. 2006;273(7):1362–72.

    Article  CAS  PubMed  Google Scholar 

  99. Wei Y, Zhang JJ, Li Z, Gow A, Chung KF, Hu M, et al. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. FASEB J. 2016;30:2115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, et al. Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol. 2012;175:1163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  101. McConnell R, Gilliland FD, Goran M, Allayee H, Hricko A, Mittelman S. Does near-roadway air pollution contribute to childhood obesity? Pediatr Obes. 2015;11:1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Braun JM, Gray K. Challenges to studying the health effects of early life environmental chemical exposures on children's health. PLoS Biol. 2017;15(12):e2002800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol. 2012;354:74–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vandenberg LN. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139.

    Article  CAS  PubMed  Google Scholar 

  105. Calafat AM. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect. 2008;116(1):39.

    Article  CAS  PubMed  Google Scholar 

  106. Babu S, Uppu SN, Martin B, Agu OA, Uppu RM. Unusually high levels of bisphenol a (BPA) in thermal paper cash register receipts (CRs): development and application of a robust LC-UV method to quantify BPA in CRs. Toxicol Mech Methods. 2015;25(5):410–6.

    Article  CAS  PubMed  Google Scholar 

  107. Legeay S, Faure S. Is bisphenol A an environmental obesogen? Fund Clin Pharmacol. 2017;31(6):594–609.

    CAS  Google Scholar 

  108. Boucher JG, Gagné R, Rowan-Carroll A, Boudreau A, Yauk CL, Atlas E. Bisphenol a and Bisphenol S induce distinct transcriptional profiles in differentiating human primary Preadipocytes. PLoS One. 2016;11(9):e0163318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K. Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci. 2005;84(2):319–27.

    Article  CAS  PubMed  Google Scholar 

  110. Boucher JG, Boudreau A, Atlas E. Bisphenol A induces differentiation of human preadipocytes in the absence of glucocorticoid and is inhibited by an estrogen-receptor antagonist. Nutr Diabetes. 2014;4(1):e102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev. 2015;95(1):47–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Boucher JG, Boudreau A, Ahmed S, Atlas E. In vitro effects of Bisphenol A beta-d-glucuronide (BPA-G) on adipogenesis in human and murine preadipocytes. Environ Health Perspect. 2015;123(12):1287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boucher JG, Ahmed S, Atlas E. Bisphenol S induces adipogenesis in primary human preadipocytes from female donors. Endocrinology. 2016;157(4):1397–407.

    Article  CAS  PubMed  Google Scholar 

  114. Rubin BS, Paranjpe M, DaFonte T, Schaeberle C, Soto AM, Obin M, et al. Perinatal BPA exposure alters body weight and composition in a dose specific and sex specific manner: the addition of peripubertal exposure exacerbates adverse effects in female mice. Reprod Toxicol. 2017;68:130–44.

    Article  CAS  PubMed  Google Scholar 

  115. Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, et al. Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ Health Perspect. 2009;117(10):1549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Angle BM, Do RP, Ponzi D, Stahlhut RW, Drury BE, Nagel SC, et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod Toxicol. 2013;42:256–68. https://doi.org/10.1016/j.reprotox.2013.07.017.

    Article  CAS  PubMed  Google Scholar 

  117. Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. Environ Res. 2018;164:45–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Johnson SA, Painter MS, Javurek AB, Ellersieck MR, Wiedmeyer CE, Thyfault JP, et al. Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity. J Dev Orig Health Dis. 2015;6:1–14.

    Article  CAS  Google Scholar 

  119. Hoepner LA, Whyatt RM, Widen EM, Hassoun A, Oberfield SE, Mueller NT, et al. Bisphenol A and adiposity in an Inner-City birth cohort. Environ Health Perspect. 2016;124:1644–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vafeiadi M, Georgiou V, Chalkiadaki G, Rantakokko P, Kiviranta H, Karachaliou M, et al. Association of Prenatal Exposure to persistent organic pollutants with Obesity and Cardiometabolic traits in early childhood: the Rhea mother-child cohort (Crete, Greece). Environ Health Perspect. 2015;123(10):1015–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Harley KG, Aguilar Schall R, Chevrier J, Tyler K, Aguirre H, Bradman A, et al. Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environ Health Perspect. 2013;121(4):514–20.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210(5):623–34.

    Article  CAS  PubMed  Google Scholar 

  123. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119(6):878–85.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hao C, Cheng X, Guo J, Xia H, Ma X. Perinatal exposure to diethyl-hexyl-phthalate induces obesity in mice. Front Biosci (Elite Ed). 2013;5:725–33.

    Article  Google Scholar 

  125. Hao C, Cheng X, Xia H, Ma X. The endocrine disruptor mono-(2-ethylhexyl) phthalate promotes adipocyte differentiation and induces obesity in mice. Biosci Rep. 2012;32(6):619–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schmidt J-S, Schaedlich K, Fiandanese N, Pocar P, Fischer B. Di(2-ethylhexyl) phthalate (DEHP) impairs female fertility and promotes adipogenesis in C3H/N mice. Environ Health Perspect. 2012;120:1123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gu H, Liu Y, Wang W, Ding L, Teng W, Liu L. In utero exposure to di-(2-ethylhexyl) phthalate induces metabolic disorder and increases fat accumulation in visceral depots of C57BL/6J mice offspring. Exp Ther Med. 2016;12(6):3806–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Feige JN, Gelman L, Rossi D, Zoete V, Metivier R, Tudor C, et al. The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J Biol Chem. 2007;282(26):19152–66.

    Article  CAS  PubMed  Google Scholar 

  129. Hurst CH, Waxman DJ. Activation of PPARalpha and PPARgamma by environmental phthalate monoesters. Toxicol Sci. 2003;74(2):297–308.

    Article  CAS  PubMed  Google Scholar 

  130. Biemann R, Fischer B, Navarrete Santos A. Adipogenic effects of a combination of the endocrine-disrupting compounds bisphenol A, diethylhexylphthalate, and tributyltin. Obes Facts. 2014;7(1):48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chiu CY, Sun SC, Chiang CK, Wang CC, Chan DC, Chen HJ, et al. Plasticizer di(2-ethylhexyl)phthalate interferes with osteoblastogenesis and adipogenesis in a mouse model. J Orthop Res. 2018;36(4):1124–34.

    CAS  PubMed  Google Scholar 

  132. Howdeshell KL, Wilson VS, Furr J, Lambright CR, Rider CV, Blystone CR, et al. A mixture of five phthalate esters inhibits fetal testicular testosterone production in the sprague-dawley rat in a cumulative, dose-additive manner. Toxicol Sci. 2008;105(1):153–65.

    Article  CAS  PubMed  Google Scholar 

  133. Kim M, Jeong JS, Kim H, Hwang S, Park IH, Lee BC, et al. Low dose exposure to Di-2-Ethylhexylphthalate in juvenile rats alters the expression of genes related with thyroid hormone regulation. Biomol Ther. 2018;26(5):512–9.

    Article  CAS  Google Scholar 

  134. Johns LE, Ferguson KK, Soldin OP, Cantonwine DE, Rivera-González LO, Del Toro LVA, et al. Urinary phthalate metabolites in relation to maternal serum thyroid and sex hormone levels during pregnancy: a longitudinal analysis. Reprod Biol Endocrinol. 2015;13:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Grimaldi M, Boulahtouf A, Delfosse V, Thouennon E, Bourguet W, Balaguer P. Reporter cell lines for the characterization of the interactions between human nuclear receptors and endocrine disruptors. Front Endocrinol. 2015;6:62.

    Article  Google Scholar 

  136. Ferguson KK, McElrath TF, Chen Y-H, Mukherjee B, Meeker JD. Urinary phthalate metabolites and biomarkers of oxidative stress in pregnant women: a repeated measures analysis. Environ Health Perspect. 2015;123(3):210–6.

    Article  CAS  PubMed  Google Scholar 

  137. Yavasoglu NU, Koksal C, Dagdeviren M, Aktug H, Yavasoglu A. Induction of oxidative stress and histological changes in liver by subacute doses of butyl cyclohexyl phthalate. Environ Toxicol. 2014;29(3):345–53.

    Article  CAS  PubMed  Google Scholar 

  138. Lin Y, Wei J, Li Y, Chen J, Zhou Z, Song L, et al. Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. Am J Physiol Endocrinol Metab. 2011;301(3):E527–38.

    Article  CAS  PubMed  Google Scholar 

  139. Lv Z, Cheng J, Huang S, Zhang Y, Wu S, Qiu Y, et al. DEHP induces obesity and hypothyroidism through both central and peripheral pathways in C3H/He mice. Obesity (Silver Spring). 2016;24(2):368–78.

    Article  CAS  Google Scholar 

  140. Wassenaar PNH, Legler J. Systematic review and meta-analysis of early life exposure to di(2-ethylhexyl) phthalate and obesity related outcomes in rodents. Chemosphere. 2017;188:174–81.

    Article  CAS  PubMed  Google Scholar 

  141. Janesick AS, Blumberg B. Obesogens: an emerging threat to public health. Am J Obstet Gynecol. 2016;214:559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Watt J, Schlezinger JJ. Structurally-diverse, PPARgamma-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells. Toxicology. 2015;331:66–77.

    Article  CAS  PubMed  Google Scholar 

  143. Li X, Ycaza J, Blumberg B. The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes. J Steroid Biochem Mol Biol. 2011;127(1–2):9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zuo Z, Chen S, Wu T, Zhang J, Su Y, Chen Y, et al. Tributyltin causes obesity and hepatic steatosis in male mice. Environ Toxicol. 2011;26(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  145. Pereira-Fernandes A, Demaegdt H, Vandermeiren K, Hectors TL, Jorens PG, Blust R, et al. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. PLoS One. 2013;8(10):e77481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kim S, Li A, Monti S, Schlezinger JJ. Tributyltin induces a transcriptional response without a brite adipocyte signature in adipocyte models. Arch Toxicol. 2018;92:2859–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chamorro-Garcia R. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal obesogen tributyltin in mice. Environ Health Perspect. 2013;121:359–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hu P, Chen X, Whitener RJ, Boder ET, Jones JO, Porollo A, et al. Effects of parabens on adipocyte differentiation. Toxicol Sci. 2013;131(1):56–70.

    Article  CAS  PubMed  Google Scholar 

  149. Hines EP, Mendola P, von Ehrenstein OS, Ye X, Calafat AM, Fenton SE. Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women. Reprod Toxicol. 2015;54:120–8.

    Article  CAS  PubMed  Google Scholar 

  150. Calafat AM, Ye X, Wong LY, Bishop AM, Needham LL. Urinary concentrations of four parabens in the U.S. population: NHANES 2005–2006. Environ Health Perspect. 2010;118(5):679–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hu P, Kennedy RC, Chen X, Zhang J, Shen CL, Chen J, et al. Differential effects on adiposity and serum marker of bone formation by post-weaning exposure to methylparaben and butylparaben. Environ Sci Pollut Res Int. 2016;23(21):21957–68.

    Article  CAS  PubMed  Google Scholar 

  152. Hu P, Overby H, Heal E, Wang S, Chen J, Shen CL, et al. Methylparaben and butylparaben alter multipotent mesenchymal stem cell fates towards adipocyte lineage. Toxicol Appl Pharmacol. 2017;329:48–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wu C, Huo W, Li Y, Zhang B, Wan Y, Zheng T, et al. Maternal urinary paraben levels and offspring size at birth from a Chinese birth cohort. Chemosphere. 2017;172:29–36.

    Article  CAS  PubMed  Google Scholar 

  154. Philippat C, Botton J, Calafat AM, Ye X, Charles M-A, Slama R, et al. Prenatal exposure to phenols and growth in boys. Epidimiology. 2014;25(5):625–35.

    Article  Google Scholar 

  155. Yueh M-F, Tukey RH. Triclosan: a widespread environmental toxicant with many biological effects. Annu Rev Pharmacol Toxicol. 2016;56:251–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Johnson PI, Koustas E, Vesterinen HM, Sutton P, Atchley DS, Kim AN, et al. Application of the navigation guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. Environ Int. 2016;92?93.

    Google Scholar 

  157. Arbuckle TE, Weiss L, Fisher M, Hauser R, Dumas P, Berube R, et al. Maternal and infant exposure to environmental phenols as measured in multiple biological matrices. Sci Total Environ. 2015;508:575–84.

    Article  CAS  PubMed  Google Scholar 

  158. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environ Health Perspect. 2008;116(3):303–7.

    Article  CAS  PubMed  Google Scholar 

  159. Buckley JP, Herring AH, Wolff MS, Calafat AM, Engel SM. Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children’s environmental health study. Environ Int. 2016;91:350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hao CJ, Cheng XJ, Xia HF, Ma X. The endocrine disruptor 4-nonylphenol promotes adipocyte differentiation and induces obesity in mice. Cell Physiol Biochem. 2012;30(2):382–94.

    Article  CAS  PubMed  Google Scholar 

  161. Lim S, Ahn SY, Song IC, Chung MH, Jang HC, Park KS, et al. Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance. PLoS One. 2009;4(4):e5186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Li X, Pham HT, Janesick AS, Blumberg B. Triflumizole is an obesogen in mice that acts through peroxisome proliferator activated receptor gamma (PPARgamma). Environ Health Perspect. 2012;120(12):1720–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Xiao X, Qi W, Clark JM, Park Y. Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stress-mediated mechanisms in 3T3-L1 adipocytes. Food Chem Toxicol. 2017;109(Pt 1):123–9.

    Article  CAS  PubMed  Google Scholar 

  164. Shen P, Hsieh TH, Yue Y, Sun Q, Clark JM, Park Y. Deltamethrin increases the fat accumulation in 3T3-L1 adipocytes and Caenorhabditis elegans. Food Chem Toxicol. 2017;101:149–56.

    Article  CAS  PubMed  Google Scholar 

  165. Sun Q, Qi W, Yang JJ, Yoon KS, Clark JM, Park Y. Fipronil promotes adipogenesis via AMPKalpha-mediated pathway in 3T3-L1 adipocytes. Food Chem Toxicol. 2016;92:217–23.

    Article  CAS  PubMed  Google Scholar 

  166. Leasure JL, Giddabasappa A, Chaney S, Johnson JE, Pothakos K, Lau YS, et al. Low-level human equivalent gestational Lead exposure produces sex-specific motor and coordination abnormalities and late-onset obesity in year-old mice. Environ Health Perspect. 2008;116(3):355–61.

    Article  CAS  PubMed  Google Scholar 

  167. Bunyan J, Murrell EA, Shah PP. The induction of obesity in rodents by means of monosodium glutamate. Br J Nutr. 1976;35(1):25–39.

    Article  CAS  PubMed  Google Scholar 

  168. Tappy L. Fructose-containing caloric sweeteners as a cause of obesity and metabolic disorders. J Exp Biol. 2018;221(Pt Suppl 1):jeb164202.

    Article  PubMed  Google Scholar 

  169. Suvorov A, Battista MC, Takser L. Perinatal exposure to low-dose 2,2′,4,4′-tetrabromodiphenyl ether affects growth in rat offspring: what is the role of IGF-1? Toxicology. 2009;260(1–3):126–31.

    Article  CAS  PubMed  Google Scholar 

  170. Pillai HK, Fang M, Beglov D, Kozakov D, Vajda S, Stapleton HM, et al. Ligand binding and activation of PPARgamma by Firemaster(R) 550: effects on adipogenesis and osteogenesis in vitro. Environ Health Perspect. 2014;122(11):1225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Woeller CF, Flores E, Pollock SJ, Phipps RP. Editor’s highlight: Thy1 (CD90) expression is reduced by the environmental chemical Tetrabromobisphenol-A to promote adipogenesis through induction of microRNA-103. Toxicol Sci. 2017;157(2):305–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chamorro-Garcia R, Kirchner S, Li X, Janesick A, Casey SC, Chow C, et al. Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferator-activated receptor gamma-independent mechanism. Environ Health Perspect. 2012;120(7):984–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sargis RM, Johnson DN, Choudhury RA, Brady MJ. Environmental endocrine disruptors promote Adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity (Silver Spring). 2010;18(7):1283–8.

    Article  CAS  Google Scholar 

  174. Park Y, Kim Y, Kim J, Yoon KS, Clark J, Lee J. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J Agric Food Chem. 2013;61(1):255–9.

    Article  CAS  PubMed  Google Scholar 

  175. Fowler SPG. Low-calorie sweetener use and energy balance: results from experimental studies in animals, and large-scale prospective studies in humans. Physiol Behav. 2016;164:517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Swithers SE. Artificial sweeteners are not the answer to childhood obesity. Appetite. 2015;93:85–90.

    Article  PubMed  Google Scholar 

  177. Fowler SP, Williams K, Resendez RG, Hunt KJ, Hazuda HP, Stern MP. Fueling the obesity epidemic? Artificially sweetened beverage use and Long-term weight gain. Obesity (Silver Spring). 2008;16(8):1894–900.

    Article  Google Scholar 

  178. Boucher JG, Ahmed S, Atlas E, Bisphenol S. Induces adipogenesis in primary human preadipocytes from female donors. Endocrinology. 2016;157(4):1397–407.

    Article  CAS  PubMed  Google Scholar 

  179. Kassotis CD, Hoffman K, Stapleton HM. Characterization of Adipogenic activity of house dust extracts and semi-volatile indoor contaminants in 3T3-L1 cells. Environ Sci Technol. 2017;51:8735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Skinner MK. A new kind of inheritance. Sci Am. 2014;311(2):44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Skinner MK. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol. 2008;25(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  182. Hanson MA, Skinner MK. Developmental origins of epigenetic transgenerational inheritance. Environ Epigen. 2016;2(1):dvw002.

    Article  CAS  Google Scholar 

  183. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One. 2013;8(1):e55387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tracey R, Manikkam M, Guerrero-Bosagna C, Skinner MK. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reprod Toxicol. 2013;36:104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Dioxin (TCDD) induces epigenetic transgenerational inheritance of adult onset disease and sperm epimutations. PLoS One. 2012;7(9):e46249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Fildes A, Charlton J, Rudisill C, Littlejohns P, Prevost AT, Gulliford MC. Probability of an obese person attaining normal body weight: cohort study using electronic health records. Am J Public Health. 2015;105:e1–6.

    Google Scholar 

  187. Lazzeretti L, Rotella F, Pala L, Rotella CM. Assessment of psychological predictors of weight loss: how and what for? World J Psychiatry. 2015;5(1):56–67.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Teixeira PJ, Carraça EV, Marques MM, Rutter H, Oppert J-M, De Bourdeaudhuij I, et al. Successful behavior change in obesity interventions in adults: a systematic review of self-regulation mediators. BMC Med. 2015;13:84.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Jiang X, Ma H, Wang Y, Liu Y. Early life factors and type 2 diabetes mellitus. J Diab Res. 2013;2013:485082.

    Google Scholar 

  190. Myers MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Baik J-H. Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB Rep. 2013;46(11):519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yu YH, Vasselli JR, Zhang Y, Mechanick JI, Korner J, Peterli R. Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes Rev. 2015;16(3):234–47.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN. Perinatal exposure to environmental estrogens and the development of obesity. Mol Nutr Food Res. 2007;51(7):912–7.

    Article  CAS  PubMed  Google Scholar 

  194. Pestana D, Teixeira D, Meireles M, Marques C, Norberto S, Sa C, et al. Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p,p'-DDE. Sci Rep. 2017;7(1):2738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Sun Q, Xiao X, Kim Y, Kim D, Yoon KS, Clark JM, et al. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J Agric Food Chem. 2016;64(49):9293–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chamorro-Garcia R, Diaz-Castillo C, Shoucri BM, Käch H, Leavitt R, Shioda T, et al. Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice. Nat Commun. 2017;8:2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. De Long NE, Holloway AC. Early-life chemical exposures and risk of metabolic syndrome. Diabetes Metab Syndr Obes. 2017;10:101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Mimoto MS, Nadal A, Sargis RM. Polluted pathways: mechanisms of metabolic disruption by endocrine disrupting chemicals. Curr Environ Health Rep. 2017;4(2):208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Sun Q, Qi W, Xiao X, Yang SH, Kim D, Yoon KS, et al. Imidacloprid promotes high fat diet-induced adiposity in female C57BL/6J mice and enhances Adipogenesis in 3T3-L1 adipocytes via the AMPKalpha-mediated pathway. J Agric Food Chem. 2017;65(31):6572–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Regnier SM, Kirkley AG, Ye H, El-Hashani E, Zhang X, Neel BA, et al. Dietary exposure to the endocrine disruptor Tolylfluanid promotes global metabolic dysfunction in male mice. Endocrinology. 2014;156:896–910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Lubrano C, Genovesi G, Specchia P, Costantini D, Mariani S, Petrangeli E, et al. Obesity and metabolic comorbidities: environmental diseases? Oxidative Med Cell Longev. 2013;2013:640673.

    Article  CAS  Google Scholar 

  202. Bansal A, Henao-Mejia J, Simmons RA. Immune system: an emerging player in mediating effects of endocrine disruptors on metabolic health. Endocrinology. 2018;159(1):32–45.

    Article  PubMed  Google Scholar 

  203. Heindel JJ, Schug TT. The perfect storm for obesity. Obesity (Silver Spring). 2013;21(6):1079–80.

    Article  Google Scholar 

  204. Sarker G, Berrens R, von Arx J, Pelczar P, Reik W, Wolfrum C, et al. Transgenerational transmission of hedonic behaviors and metabolic phenotypes induced by maternal overnutrition. Transl Psychiatry. 2018;8(1):195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Heindel JJ, vom Saal FS, Blumberg B, Bovolin P, Calamandrei G, Ceresini G, et al. Parma consensus statement on metabolic disruptors. Environ Health. 2015;14:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heindel, J.J. (2020). Long-Term Implications of Developmental Programming and Obesity. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics