Skip to main content

Further Direction of Research and Policy Making of Environment and Children’s Health

  • Chapter
  • First Online:
  • 620 Accesses

Abstract

The Minamata Convention was established following the Minamata disaster. To protect humans and the environment from persistent organic pollutants, the Stockholm Convention was established. However, there are many remaining chemicals with potential hazardous properties so that we must speed up and shorten the time to take action for such chemicals. Emerging environmental hazards including toxic chemicals are a threat to child health. A considerable number of birth cohorts have been recently established, and evidence reveals that there are certain adverse associations between environmental chemical exposures in utero and adolescent and children’s health. However, there are remaining agenda in preventing exposure of children to hazardous chemicals. We have pointed out challenges in future studies on (1) other risk factors that are not comprehensively addressed in this book, (2) mixture exposure, (3) genetics, (4) biomolecular approaches, (5) birth cohorts and consortiums, and (6) inclusion of environment into the original Developmental Origins of Health and Disease concept, as well as (7) long-term follow-up. The United Nations set the sustainable development goals. We should act together to create cleaner and safer environments for children by preventing exposure to chemical hazards, which will contribute to a healthier, more secure, and sustainable future for the world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Health Organization. Inheriting a sustainable world? Atlas on children’s health and the environment. Brighton: WHO; 2017.

    Google Scholar 

  2. Watts N, Amann M, Ayeb-Karlsson S, et al. The lancet countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet. 2018;391(10120):581–630.

    Article  PubMed  Google Scholar 

  3. Kamiya K, Ozasa K, Akiba S, et al. Long-term effects of radiation exposure on health. Lancet. 2015;386(9992):469–78.

    Article  CAS  PubMed  Google Scholar 

  4. Akiba S, Nandakumar A, Higuchi K, Tsuji M, Uwatoko F. Thyroid nodule prevalence among young residents in the evacuation area after Fukushima Daiichi nuclear accident: results of preliminary analysis using the official data. J Radiat Cancer Res. 2017;8(4):174.

    Article  Google Scholar 

  5. Reiners C, Kesminiene A, Schüz J. Comments on ‘thyroid nodule prevalence among young residents in the evacuation area after Fukushima Daiichi nuclear accident: results of preliminary analysis using the official data. J Radiat Cancer Res. 2019;10(1):79–80.

    Article  Google Scholar 

  6. Akiba S. Author reply. J Radiat Cancer Res. 2019;10(1):80–1.

    Article  Google Scholar 

  7. Tsuda T, Tokinobu A, Yamamoto E, Suzuki E. Thyroid cancer detection by ultrasound among residents ages 18 years and younger in Fukushima, Japan: 2011 to 2014. Epidemiology. 2016;27(3):316–22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jorgensen TJ. To the Editor “Thyroid cancer among young people in Fukushima”. Epidemiology. 2016;27(3):e17.

    Article  PubMed  Google Scholar 

  9. Takamura N. To the Editor “Thyroid cancer among young people in Fukushima”. Epidemiology. 2016;27(3):e18.

    Article  PubMed  Google Scholar 

  10. Wakeford R, Auvinen A, Gent RN, Jacob P, Kesminiene A, Laurier D, Schuz J, Shore R, Walsh L, Zhang W. To the Editor “Thyroid cancer among young people in Fukushima”. Epidemiology. 2016;27(3):e20–1.

    Article  PubMed  Google Scholar 

  11. Takahashi H, Ohira T, Yasumura S, Nollet KE, Ohtsuru A, Tanigawa K, Abe M, Ohto H. To the Editor “Thyroid cancer detection by ultrasound among residents ages 18 years”. Epidemiology. 2016;27(3):e21.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Davis S. Screening for thyroid cancer after the Fukushima disaster—what do we learn from such as effort? Epidemiology. 2016;27(3):323–5.

    Article  PubMed  Google Scholar 

  13. Akiba S, Nandakumar A, Uwatoko F. Social and health effects of Fukushima nuclear accident on residents and evacuees. In: Mishra KP, editor. Biological responses, monitoring and protection from radiation exposure. New York: Nova Publishers, Inc.; 2015. p. 91–105.

    Google Scholar 

  14. Electromagnetic fields and public health: mobile phones. https://www.who.int/en/news-room/fact-sheets/detail/electromagnetic-fields-and-public-health-mobile-phones. Accessed 1 July 2019.

  15. Norback D, Kishi R, Araki A, editors. Indoor environmental quality and health risk toward healthier environment for all. Singapore: Springer; 2019.

    Google Scholar 

  16. Boas M, Frederiksen H, Feldt-Rasmussen U, et al. Childhood exposure to phthalates: associations with thyroid function, insulin-like growth factor I, and growth. Environ Health Perspect. 2010;118(10):1458–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Income inequality (indicator). https://www.oecd-ilibrary.org/social-issues-migration-health/income-inequality/indicator/english_459aa7f1-en. Accessed 17 June 2019.

  18. Tamura N, Hanaoka T, Ito K, et al. Different risk factors for very low birth weight, term-small-for-gestational-age, or preterm birth in Japan. Int J Environ Res Public Health. 2018;15:369.

    Article  PubMed Central  Google Scholar 

  19. Chatzi L, Koutra K, Vassilaki M, et al. Maternal personality traits and risk of preterm birth and fetal growth restriction. Eur Psychiatry. 2013;28(4):213–8.

    Article  CAS  PubMed  Google Scholar 

  20. National Health and Nutrition Examination Survey. https://www.cdc.gov/nchs/nhanes/index.htm. Accessed 1 July 2019.

  21. German Environmental Survey. https://www.umweltbundesamt.de/en/topics/health/assessing-environmentally-related-health-risks/german-environmental-survey-geres. Accessed 1 July 2019.

  22. Schoeters G, Govarts E, Bruckers L, et al. Three cycles of human biomonitoring in Flanders—time trends observed in the Flemish environment and health study. Int J Hyg Environ Health. 2017;220(2, Part A):36–45.

    Article  PubMed  Google Scholar 

  23. Choi W, Kim S, Baek Y-W, Choi K, et al. Exposure to environmental chemicals among Korean adults—updates from the second Korean National Environmental Health Survey (2012–2014). Int J Hyg Environ Health. 2017;220(2, Part A):29–35.

    Article  CAS  PubMed  Google Scholar 

  24. http://www.eu-hbm.info/democophes. Accessed 1 July 2019.

  25. Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: an analytical primer to studying the environmental chemical space of the human exposome. Environ Int. 2017;100:32–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kishi R, Araki A, Miyashita C, Kobayashi S, Miura R, Minatoya M. The Hokkaido study on environment and children's health. In: Sata F, Fukuoka H, Hanson M, editors. Pre-emptive medicine: public health aspects of developmental origins of health and disease. Current topics in environmental health and preventive medicine. Singapore: Springer; 2019. p. 145–63.

    Google Scholar 

  27. Kobayashi S, Sata F, Sasaki S, et al. Combined effects of AHR, CYP1A1, and XRCC1 genotypes and prenatal maternal smoking on infant birth size: biomarker assessment in the Hokkaido study. Reprod Toxicol. 2016;65:295–306.

    Article  CAS  PubMed  Google Scholar 

  28. Kobayashi S, Sata F, Sasaki S, et al. Modification of adverse health effects of maternal active and passive smoking by genetic susceptibility: dose-dependent association of plasma cotinine with infant birth size among Japanese women—the Hokkaido study. Reprod Toxicol. 2017;74:94–103.

    Article  CAS  PubMed  Google Scholar 

  29. Sasaki S, Kondo T, Sata F, et al. Maternal smoking during pregnancy and genetic polymorphisms in the Ah receptor, CYP1A1 and GSTM1 affect infant birth size in Japanese subjects. Mol Hum Reprod. 2006;12(2):77–83.

    Article  CAS  PubMed  Google Scholar 

  30. Asaki S, Sata F, Katoh S, et al. Adverse birth outcomes associated with maternal smoking and polymorphisms in the N-Nitrosamine-metabolizing enzyme genes NQO1 and CYP2E1. Am J Epidemiol. 2008;167(6):719–26.

    Article  Google Scholar 

  31. Yila TA, Sasaki S, Miyashita C, et al. Effects of maternal 5,10-methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and tobacco smoking on infant birth weight in a Japanese population. J Epidemiol. 2012;22(2):91–102.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Braimoh TS, Kobayashi S, Sata F, et al. Association of prenatal passive smoking and metabolic gene polymorphisms with child growth from birth to 3 years of age in the Hokkaido Birth Cohort Study on environment and Children's health. Sci Total Environ. 2017;605–606:995–1002.

    Article  PubMed  CAS  Google Scholar 

  33. Kobayashi S, Sata F, Sasaki S, et al. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women. Toxicol Lett. 2013;219(3):269–78.

    Article  CAS  PubMed  Google Scholar 

  34. Smith GD, Ebrahim S. What can Mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ. 2005;330:1076–9.

    Article  Google Scholar 

  35. Nafee T, Farrell W, Carroll W, Fryer A, Ismail K. Review article: epigenetic control of fetal gene expression. BJOG. 2008;115(2):158–68.

    Article  CAS  PubMed  Google Scholar 

  36. Hackett JA, Surani MA. DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368(1609):20110328.

    Article  CAS  Google Scholar 

  37. Kobayashi S, Azumi K, Goudarzi H, Araki A, Miyashita C, Kobayashi S. Effects of prenatal perfluoroalkyl acid exposure on cord blood IGF2/H19 methylation and ponderal index: the Hokkaido study. J Expo Sci Environ Epidemiol. 2017;27:251–9.

    Article  CAS  PubMed  Google Scholar 

  38. Leung Y-K, Ouyang B, Niu L, et al. Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics. 2018;13(3):290–300.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yu X. Association of prenatal organochlorine pesticide-dichlorodiphenyltrichloroethane exposure with fetal genome-wide DNA methylation. Life Sci. 2018;200:6–86.

    Article  CAS  PubMed  Google Scholar 

  40. Kingsley SL, Kelsey KT, Butler R, et al. Maternal serum PFOA concentration and DNA methylation in cord blood: a pilot study. Environ Res. 2017;158:174–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miura R, Araki A, Miyashita C, et al. An epigenome-wide study of cord blood DNA methylations in relation to prenatal perfluoroalkyl substance exposure: the Hokkaido study. Environ Int. 2018;115:21–8.

    Article  CAS  PubMed  Google Scholar 

  42. Chen CH, Jiang SS, Chang IS, Wen HJ, Sun CW, Wang SL. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth. Environ Res. 2018;162:261–70.

    Article  CAS  PubMed  Google Scholar 

  43. Solomon O, Yousefi P, Huen K, et al. Prenatal phthalate exposure and altered patterns of DNA methylation in cord blood. Environ Mol Mutagen. 2017;58(6):398–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hogg K, Price EM, Hanna CW, Robinson WP. Prenatal and perinatal environmental influences on the human fetal and placental epigenome. Clin Pharmacol Ther. 2012;92(6):716–26.

    Article  CAS  PubMed  Google Scholar 

  45. Ankley GT, Bennett RS, Erickson RJ, et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29(3):730–41.

    Article  CAS  PubMed  Google Scholar 

  46. Kishi R, Zhang JJ, Ha EH, et al. Birth cohort consortium of Asia (BiCCA) – current and future perspectives. Epidemiology. 2017;28(1):S19–34.

    Article  PubMed  Google Scholar 

  47. Vrijheid M, Casas M, Bergstrom A, et al. European birth cohorts for environmental health research. Environ Health Perspect. 2012;120(1):29–37.

    Article  PubMed  Google Scholar 

  48. Early Growth Genetics Consortium. https://egg-consortium.org/. Accessed 1 July 2019.

  49. Middeldorp CM, Felix JF, Mahajan A, et al. The early growth genetics (EGG) and EArly genetics and Lifecourse epidemiology (EAGLE) consortia: design, results and future prospects. Eur J Epidemiol. 2019;34(3):279–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Korevaar TIM, Taylor PN, Dayan CM, Peeters RP. An invitation to join the consortium on thyroid and pregnancy. Eur Thyroid J. 2016;5(4):277.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kishi R, Araki A, Minatoya M, Itoh S, Goudarzi H, Miyashita C. Birth cohorts in Asia: the importance, advantages, and disadvantages of different-sized cohorts. Sci Total Environ. 2018;615:1143–54.

    Article  CAS  PubMed  Google Scholar 

  52. Barker D, Eriksson J, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–9.

    Article  CAS  PubMed  Google Scholar 

  53. Gluckman P, Hanson M, Cooper C, Thornburg K. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Newman J, Ross M. Early life origins of human health and disease. Basel: Karger; 2009.

    Google Scholar 

  55. Haugen AC, Schug TT, Collman G, Heindel JJ. Evolution of DOHaD: the impact of environmental health sciences. J Dev Orig Health Dis. 2015;6(2):55–64.

    Article  CAS  PubMed  Google Scholar 

  56. Environmentally-induced developmental origins of health and disease. https://cordis.europa.eu/project/rcn/106798/factsheet/en. Accessed 1 July 2019.

  57. Hanson MA, Skinner MK. Developmental origins of epigenetic transgenerational inheritance. Environ Epigenet. 2016;2(1):dvw002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fleming TP, Watkins AJ, Velazquez MA, et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018;391(10132):1842–52.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Himeno S, Aoshim K, editors. Cadmium toxicity, new aspects in human disease, rice contamination, and cytotoxicity. Singapore: Springer; 2019.

    Google Scholar 

  60. Stockhorm convention. http://www.pops.int/. Accessed 1 July 2019.

  61. Ae R, Nakamura Y, Tada H, et al. An 18-year follow-up survey of dioxin levels in human milk in Japan. J Epidemiol. 2018;28(6):300–6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ingelido AM, Abate V, Abballe A, et al. Concentrations of polychlorinated dibenzodioxins, polychlorodibenzofurans, and polychlorobiphenyls in women of reproductive age in Italy: a human biomonitoring study. Int J Hyg Environ Health. 2017;220(2, Part B):378–86.

    Article  CAS  PubMed  Google Scholar 

  63. van den Berg M, Kypke K, Kotz A, et al. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefit–risk evaluation of breastfeeding. Arch Toxicol. 2017;91(1):83–96.

    Article  PubMed  CAS  Google Scholar 

  64. Tsai M-S, Miyashita C, Araki A, et al. Determinants and temporal trends of perfluoroalkyl substances in pregnant women: the Hokkaido study on environment and Children’s health. Int J Environ Res Public Health. 2018;15(5):989.

    Article  PubMed Central  CAS  Google Scholar 

  65. Ministry of Health Labour, and Welfare, Japan. Booklet of occupational hygiene (in Japanese).

    Google Scholar 

  66. Sajiki J, Yonekubo J. Leaching of bisphenol A (BPA) from polycarbonate plastic to water containing amino acids and its degradation by radical oxygen species. Chemosphere. 2004;55(6):861–7.

    Article  CAS  PubMed  Google Scholar 

  67. The European Commission. Commission Regulation (EU) 2018/2005 of 17 December 2018.

    Google Scholar 

  68. Okada E, Kashino I, Matsuura H, et al. Temporal trends of perfluoroalkyl acids in plasma samples of pregnant women in Hokkaido, Japan, 2003–2011. Environ Int. 2013;60:89–96.

    Article  CAS  PubMed  Google Scholar 

  69. Wang M, Park JS, Petreas M. Temporal changes in the levels of perfluorinated compounds in California women's serum over the past 50 years. Environ Sci Technol. 2011;45(17):7510–6.

    Article  CAS  PubMed  Google Scholar 

  70. Glynn A, Berger U, Bignert A, et al. Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: serial sampling during pregnancy and nursing, and temporal trends 1996–2010. Environ Sci Technol. 2012;46(16):9071–9.

    Article  CAS  PubMed  Google Scholar 

  71. Gyllenhammar I, Glynn A, Jönsson BAG, et al. Diverging temporal trends of human exposure to bisphenols and plastizisers, such as phthalates, caused by substitution of legacy EDCs? Environ Res. 2017;153:48–54.

    Article  CAS  PubMed  Google Scholar 

  72. Zota AR, Calafat AM, Woodruff TJ. Temporal trends in phthalate exposures: findings from the national health and nutrition examination survey, 2001–2010. Environ Health Perspect. 2014;122(3):235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Noel-Brune M, Goldizen FC, Neira M, et al. Health effects of exposure to e-waste. Lancet Glob Health. 2013;1(2):e70.

    Article  PubMed  Google Scholar 

  74. Grandjean P, Abdennebi-Najar L, Barouki R, et al. Timescales of developmental toxicity impacting on research and needs for intervention. Basic Clin Pharmacol Toxicol. 2018;00:1–11.

    Google Scholar 

  75. WHO and UNEP. Global assessment of the state-of-the-science of endocrine disruptors. 2002.

    Google Scholar 

  76. WHO and UNEP. State of the science of endocrine disrupting chemicals—an assessment of the state of the science of endocrine disruptors prepared by a group of experts for the United Nations Environment Programme (UNEP) and WHO. 2012.

    Google Scholar 

  77. Shape the Future of Life: Healthy Environments for Children. https://www.who.int/world-health-day/previous/2003/press/announcement2/en/. Accessed 1 July 2019.

Download references

Acknowledgements

This research was supported in part by Grants-in-Aid for Scientific Research from the Japan Ministry of Health, Labour, and Welfare; and the Japan Agency for Medical Research and Development (AMED) under Grant Number JP18gk0110032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko Araki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kishi, R., Araki, A. (2020). Further Direction of Research and Policy Making of Environment and Children’s Health. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics