Skip to main content

Epigenetics: Strategies for Prevention Research

  • Chapter
  • First Online:
Health Impacts of Developmental Exposure to Environmental Chemicals

Abstract

Being etiologically positioned between the genome and the environment, epigenetic markers (e.g., DNA methylation) represent the cumulative memory of genetic susceptibility and environmental exposures. Hence, the premise of epigenetics is that it can serve as a biomarker of the interplay between genetic predisposition and current and past environmental exposures. Such biomarkers can identify at-risk subgroups and related past and current exposures, supportive in devising mitigating and preventive strategies. As explained in this chapter, exposures to environmental chemicals result in epigenetic modifications that, conditional on genetic susceptibilities, mediate exposure effects on disease development. However, to gain better insights on the link between environmental exposures, epigenetic modifications, and disease mechanisms, researchers need to develop and incorporate epidemiologic methods and strategies that can explain how epigenetics might mediate the influence of environmental exposures on disease development. Once causal and molecular pathways are elucidated, epigenetic markers will serve as diagnostic and therapeutic targets facilitating the vision of personalized precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ledford H. Language: disputed definitions. Nature. 2008;455:1023–8.

    Article  PubMed  CAS  Google Scholar 

  2. Nanney DL. Epigenetic control systems. Proc Natl Acad Sci U S A. 1958;44:712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ptashne M. On the use of the word ‘epigenetic’. Curr Biol. 2007;17:R233–R6.

    Article  CAS  PubMed  Google Scholar 

  4. Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet. 2012;13:153–62.

    Article  CAS  PubMed  Google Scholar 

  5. Alegria-Torres JA, Baccarelli A, Bollati V. Epigenetics and lifestyle. Epigenomics. 2011;3:267–77.

    Article  PubMed  CAS  Google Scholar 

  6. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–92.

    Article  CAS  PubMed  Google Scholar 

  7. Lovinsky-Desir S, Miller RL. Epigenetics, asthma, and allergic diseases: a review of the latest advancements. Curr Allergy Asthma Rep. 2012;12:211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clifford RL, John AE, Brightling CE, Knox AJ. Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165a secretion from airway smooth muscle cells in asthma. J Immunol. 2012;189:819–31.

    Article  CAS  PubMed  Google Scholar 

  9. Royce SG, Karagiannis TC. Histone deacetylases and their role in asthma. J Asthma. 2012;49:121–8.

    Article  CAS  PubMed  Google Scholar 

  10. Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature. 2011;479:365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Callinan PA, Feinberg AP. The emerging science of epigenomics. Hum Mol Genet. 2006;15(suppl_1):R95–101.

    Article  CAS  PubMed  Google Scholar 

  12. Travers AA, Vaillant C, Arneodo A, Muskhelishvili G. DNA structure, nucleosome placement and chromatin remodelling: a perspective. Biochem Soc Trans. 2012;40:335–40.

    Article  CAS  PubMed  Google Scholar 

  13. Berr A, Menard R, Heitz T, Shen WH. Chromatin modification and remodelling: a regulatory landscape for the control of Arabidopsis defence responses upon pathogen attack. Cell Microbiol. 2012;14:829–39.

    Article  CAS  PubMed  Google Scholar 

  14. Grigoryev SA, Woodcock CL. Chromatin organization - the 30 nm fiber. Exp Cell Res. 2012;318:1448–55.

    Article  CAS  PubMed  Google Scholar 

  15. Angulo M, Lecuona E, Sznajder JI. Role of MicroRNAs in lung disease. Arch Bronconeumol. 2012;48:325–30.

    Article  PubMed  Google Scholar 

  16. Su WY, Xiong H, Fang JY. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem Biophys Res Commun. 2010;396:177–81.

    Article  CAS  PubMed  Google Scholar 

  17. Yang IV, Schwartz DA. Epigenetic control of gene expression in the lung. Am J Respir Crit Care Med. 2011;183:1295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A, Fritz H, et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature. 2012;489:447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157:95–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic mechanisms of transmission of metabolic disease across generations. Cell Metab. 2017;25:559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu H, Hauser R, Krawetz SA, Pilsner JR. Environmental susceptibility of the sperm epigenome during windows of male germ cell development. Curr Environ Health Rep. 2015;2:356–66.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sheng L, Ye L, Zhang D, Cawthorn WP, Xu B. New insights into the long non-coding RNA SRA: physiological functions and mechanisms of action. Front Med. 2018;5:244.

    Article  Google Scholar 

  23. Wu W, Bhagat TD, Yang X, Song JH, Cheng Y, Agarwal R, et al. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology. 2013;144:956–66.e4.

    Article  CAS  PubMed  Google Scholar 

  24. Kurdyukov S, Bullock M. DNA methylation analysis: choosing the right method. Biology. 2016;5:E3.

    Article  PubMed  CAS  Google Scholar 

  25. Berti C, Agostoni C, Davanzo R, Hypponen E, Isolauri E, Meltzer HM, et al. Early-life nutritional exposures and lifelong health: immediate and long-lasting impacts of probiotics, vitamin D, and breastfeeding. Nutr Rev. 2017;75:83–97.

    PubMed  Google Scholar 

  26. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Torano EG, Garcia MG, Fernandez-Morera JL, Nino-Garcia P, Fernandez AF. The impact of external factors on the epigenome: in utero and over lifetime. Biomed Res Int. 2016;2016:2568635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98:680–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jurkowska RZ, Jeltsch A. Enzymology of mammalian DNA methyltransferases. Adv Exp Med Biol. 2016;945:87–122.

    Article  CAS  PubMed  Google Scholar 

  30. Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB, Goossens L. DNA methylation targeting: the DNMT/HMT crosstalk challenge. Biomol Ther. 2017;7:3.

    Google Scholar 

  31. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karmaus W, Ziyab AH, Everson T, Holloway JW. Epigenetic mechanisms and models in the origins of asthma. Curr Opin Allergy Clin Immunol. 2013;13:63–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018;378:1323–34.

    Article  CAS  PubMed  Google Scholar 

  35. Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 2011;12:R10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6:107–16.

    Article  CAS  PubMed  Google Scholar 

  37. Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015;31:274–80.

    Article  CAS  PubMed  Google Scholar 

  38. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20:320–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dover GJ. The Barker hypothesis: how pediatricans will diagnose and prevent common adult-onset diseases. Trans Am Clin Climatol Assoc. 2009;120:199–207.

    PubMed  PubMed Central  Google Scholar 

  40. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saffery R, Novakovic B. Epigenetics as the mediator of fetal programming of adult onset disease: what is the evidence? Acta Obstet Gynecol Scand. 2014;93:1090–8.

    Article  PubMed  Google Scholar 

  42. DeVries A, Vercelli D. The neonatal methylome as a gatekeeper in the trajectory to childhood asthma. Epigenomics. 2017;9:585–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu S, Gennings C, Wright RJ, Wilson A, Burris HH, Just AC, et al. Prenatal stress, methylation in inflammation-related genes, and adiposity measures in early childhood: the PROGRESS cohort study. Psychosom Med. 2018;80:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beyan H, Down TA, Ramagopalan SV, Uvebrant K, Nilsson A, Holland ML, et al. Guthrie card methylomics identifies temporally stable epialleles that are present at birth in humans. Genome Res. 2012;22:2138–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lillycrop KA, Costello PM, Teh AL, Murray RJ, Clarke-Harris R, Barton SJ, et al. Association between perinatal methylation of the neuronal differentiation regulator HES1 and later childhood neurocognitive function and behaviour. Int J Epidemiol. 2015;44:1263–76.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang IJ, Chen SL, Lu TP, Chuang EY, Chen PC. Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy. 2013;43:535–43.

    Article  CAS  PubMed  Google Scholar 

  47. Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R, et al. Relation of DNA methylation of 5'-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One. 2009;4:e4488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Cardenas A, Rifas-Shiman SL, Agha G, Hivert MF, Litonjua AA, DeMeo DL, et al. Persistent DNA methylation changes associated with prenatal mercury exposure and cognitive performance during childhood. Sci Rep. 2017;7:288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lappalainen T, Greally JM. Associating cellular epigenetic models with human phenotypes. Nat Rev Genet. 2017;18:441–51.

    Article  CAS  PubMed  Google Scholar 

  50. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.

    Article  PubMed Central  CAS  Google Scholar 

  51. Richmond RC, Suderman M, Langdon R, Relton CL, Davey Smith G. DNA methylation as a marker for prenatal smoke exposure in adults. Int J Epidemiol. 2018;47:1120–30.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Talhout R, Schulz T, Florek E, van Benthem J, Wester P, Opperhuizen A. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 2011;8:613–28.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pereira PP, Da Mata FA, Figueiredo AC, de Andrade KR, Pereira MG. Maternal active smoking during pregnancy and low birth weight in the Americas: a systematic review and meta-analysis. Nicotine Tob Res. 2017;19:497–505.

    Article  PubMed  Google Scholar 

  54. Suter MA, Anders AM, Aagaard KM. Maternal smoking as a model for environmental epigenetic changes affecting birthweight and fetal programming. Mol Hum Reprod. 2013;19:1–6.

    Article  PubMed  Google Scholar 

  55. Balte P, Karmaus W, Roberts G, Kurukulaaratchy R, Mitchell F, Arshad H. Relationship between birth weight, maternal smoking during pregnancy and childhood and adolescent lung function: a path analysis. Respir Med. 2016;121:13–20.

    Article  PubMed  PubMed Central  Google Scholar 

  56. McEvoy CT, Spindel ER. Pulmonary effects of maternal smoking on the fetus and child: effects on lung development, respiratory morbidities, and life long lung health. Paediatr Respir Rev. 2017;21:27–33.

    PubMed  Google Scholar 

  57. Ziyab AH, Karmaus W, Kurukulaaratchy RJ, Zhang H, Arshad SH. Developmental trajectories of body mass index from infancy to 18 years of age: prenatal determinants and health consequences. J Epidemiol Community Health. 2014;68:934–41.

    Article  PubMed  Google Scholar 

  58. Rayfield S, Plugge E. Systematic review and meta-analysis of the association between maternal smoking in pregnancy and childhood overweight and obesity. J Epidemiol Community Health. 2017;71:162–73.

    Article  PubMed  Google Scholar 

  59. Behl M, Rao D, Aagaard K, Davidson TL, Levin ED, Slotkin TA, et al. Evaluation of the association between maternal smoking, childhood obesity, and metabolic disorders: a National Toxicology Program Workshop Review. Environ Health Perspect. 2013;121:170–80.

    Article  PubMed  Google Scholar 

  60. Clifford A, Lang L, Chen R. Effects of maternal cigarette smoking during pregnancy on cognitive parameters of children and young adults: a literature review. Neurotoxicol Teratol. 2012;34:560–70.

    Article  CAS  PubMed  Google Scholar 

  61. Chudal R, Brown AS, Gissler M, Suominen A, Sourander A. Is maternal smoking during pregnancy associated with bipolar disorder in offspring? J Affect Disord. 2015;171:132–6.

    Article  PubMed  Google Scholar 

  62. Jarvis MJ, Russell MA, Benowitz NL, Feyerabend C. Elimination of cotinine from body fluids: implications for noninvasive measurement of tobacco smoke exposure. Am J Public Health. 1988;78:696–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120:1425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee KW, Pausova Z. Cigarette smoking and DNA methylation. Front Genet. 2013;4:132.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shenker NS, Ueland PM, Polidoro S, van Veldhoven K, Ricceri F, Brown R, et al. DNA methylation as a long-term biomarker of exposure to tobacco smoke. Epidemiology. 2013;24:712–6.

    Article  PubMed  Google Scholar 

  66. Breton CV, Siegmund KD, Joubert BR, Wang X, Qui W, Carey V, et al. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. PLoS One. 2014;9:e99716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bourdrel T, Bind MA, Bejot Y, Morel O, Argacha JF. Cardiovascular effects of air pollution. Arch Cardiovasc Dis. 2017;110:634.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Carlsten C, Rider CF. Traffic-related air pollution and allergic disease: an update in the context of global urbanization. Curr Opin Allergy Clin Immunol. 2017;17:85–9.

    Article  PubMed  Google Scholar 

  69. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. Lancet. 2014;383:1581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pedersen M, Stayner L, Slama R, Sorensen M, Figueras F, Nieuwenhuijsen MJ, et al. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis. Hypertension. 2014;64:494–500.

    Article  CAS  PubMed  Google Scholar 

  71. Carre J, Gatimel N, Moreau J, Parinaud J, Leandri R. Does air pollution play a role in infertility?: a systematic review. Environ Health. 2017;16:82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Peng C, den Dekker M, Cardenas A, Rifas-Shiman SL, Gibson H, Agha G, et al. Residential proximity to major roadways at birth, DNA methylation at birth and midchildhood, and childhood cognitive test scores: project viva (Massachusetts, USA). Environ Health Perspect. 2018;126:97006.

    Article  CAS  PubMed  Google Scholar 

  73. Ji H, Biagini Myers JM, Brandt EB, Brokamp C, Ryan PH, Khurana Hershey GK. Air pollution, epigenetics, and asthma. Allergy Asthma Clin Immunol. 2016;12:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandstrom T, Dahlen SE. Health effects of diesel exhaust emissions. Eur Respir J. 2001;17:733–46.

    Article  CAS  PubMed  Google Scholar 

  75. De Prins S, Koppen G, Jacobs G, Dons E, Van de Mieroop E, Nelen V, et al. Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up. Environ Int. 2013;59:418–24.

    Article  PubMed  CAS  Google Scholar 

  76. Breton CV, Salam MT, Wang X, Byun HM, Siegmund KD, Gilliland FD. Particulate matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. Environ Health Perspect. 2012;120:1320–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Commodore A, Mukherjee N, Chung D, Svendsen E, Vena J, Pearce J, et al. Frequency of heavy vehicle traffic and association with DNA methylation at age 18 years in a subset of the Isle of Wight birth cohort. Environ epigenetics. 2018;4:dvy028.

    Article  CAS  Google Scholar 

  78. Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect. 2009;117:217–22.

    Article  CAS  PubMed  Google Scholar 

  79. Salam MT, Byun HM, Lurmann F, Breton CV, Wang X, Eckel SP, et al. Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J Allergy Clin Immunol. 2012;129:232-9.e1–7.

    Article  CAS  Google Scholar 

  80. Brunst KJ, Leung YK, Ryan PH, Khurana Hershey GK, Levin L, Ji H, et al. Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. J Allergy Clin Immunol. 2013;131:592-4.e1–3.

    Article  CAS  Google Scholar 

  81. Somineni HK, Zhang X, Biagini Myers JM, Kovacic MB, Ulm A, Jurcak N, et al. Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J Allergy Clin Immunol. 2016;137:797–805.e5.

    Article  CAS  PubMed  Google Scholar 

  82. Tang WY, Levin L, Talaska G, Cheung YY, Herbstman J, Tang D, et al. Maternal exposure to polycyclic aromatic hydrocarbons and 5'-CpG methylation of interferon-gamma in cord white blood cells. Environ Health Perspect. 2012;120:1195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Anto JM, Auffray C, et al. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect. 2017;125:104–10.

    Article  CAS  PubMed  Google Scholar 

  84. Wigle DT, Arbuckle TE, Turner MC, Berube A, Yang Q, Liu S, et al. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Environ Health B Crit Rev. 2008;11:373–517.

    Article  CAS  PubMed  Google Scholar 

  85. Windham G, Fenster L. Environmental contaminants and pregnancy outcomes. Fertil Steril. 2008;89:e111–6; discussion e7.

    Article  PubMed  Google Scholar 

  86. Karmaus W, Osuch JR, Eneli I, Mudd LM, Zhang J, Mikucki D, et al. Maternal levels of dichlorodiphenyl-dichloroethylene (DDE) may increase weight and body mass index in adult female offspring. Occup Environ Med. 2009;66:143–9.

    Article  CAS  PubMed  Google Scholar 

  87. Hansen S, Strom M, Olsen SF, Maslova E, Rantakokko P, Kiviranta H, et al. Maternal concentrations of persistent organochlorine pollutants and the risk of asthma in offspring: results from a prospective cohort with 20 years of follow-up. Environ Health Perspect. 2014;122:93–9.

    Article  PubMed  CAS  Google Scholar 

  88. Guerrero-Preston R, Goldman LR, Brebi-Mieville P, Ili-Gangas C, Lebron C, Witter FR, et al. Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics. 2010;5:539–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huen K, Yousefi P, Bradman A, Yan L, Harley KG, Kogut K, et al. Effects of age, sex, and persistent organic pollutants on DNA methylation in children. Environ Mol Mutagen. 2014;55:209–22.

    Article  CAS  PubMed  Google Scholar 

  90. Dao T, Hong X, Wang X, Tang WY. Aberrant 5'-CpG methylation of cord blood TNFalpha associated with maternal exposure to polybrominated diphenyl ethers. PLoS One. 2015;10:e0138815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, et al. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect. 2015;123:412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pacchierotti F, Spano M. Environmental impact on DNA methylation in the germline: state of the art and gaps of knowledge. Biomed Res Int. 2015;2015:123484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kaushal A, Zhang H, Karmaus WJJ, Everson TM, Marsit CJ, Karagas MR, et al. Genome-wide DNA methylation at birth in relation to in utero arsenic exposure and the associated health in later life. Environ Health. 2017;16:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Broberg K, Ahmed S, Engstrom K, Hossain MB, Jurkovic Mlakar S, Bottai M, et al. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis. 2014;5:288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rojas D, Rager JE, Smeester L, Bailey KA, Drobna Z, Rubio-Andrade M, et al. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015;143:97–106.

    Article  CAS  PubMed  Google Scholar 

  96. Koestler DC, Avissar-Whiting M, Houseman EA, Karagas MR, Marsit CJ. Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ Health Perspect. 2013;121:971–7.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18:4046–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Marjonen H, Sierra A, Nyman A, Rogojin V, Grohn O, Linden AM, et al. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model. PLoS One. 2015;10:e0124931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Fransquet PD, et al. Perinatal maternal alcohol consumption and methylation of the dopamine receptor DRD4 in the offspring: the Triple B study. Environ Epigenet. 2016;2:dvw023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ryan J, Mansell T, Fransquet P, Saffery R. Does maternal mental Well-being in pregnancy impact the early human epigenome? Epigenomics. 2017;9:313–32.

    Article  CAS  PubMed  Google Scholar 

  102. Stonawski V, Frey S, Golub Y, Moll GH, Heinrich H, Eichler A. [Epigenetic modifications in children associated with maternal emotional stress during pregnancy]. Z Kinder Jugendpsychiatr Psychother. 2018;46:155–67.

    Google Scholar 

  103. Chatterton Z, Hartley BJ, Seok MH, Mendelev N, Chen S, Milekic M, et al. In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics Chromatin. 2017;10:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Knopik VS, Maccani MA, Francazio S, McGeary JE. The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol. 2012;24:1377–90.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ligthart S, Steenaard RV, Peters MJ, van Meurs JB, Sijbrands EJ, Uitterlinden AG, et al. Tobacco smoking is associated with DNA methylation of diabetes susceptibility genes. Diabetologia. 2016;59:998–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mansfield AS, Wang L, Cunningham JM, Jen J, Kolbert CP, Sun Z, et al. DNA methylation and RNA expression profiles in lung adenocarcinomas of never-smokers. Cancer Genet. 2015;208:253–60.

    Article  CAS  PubMed  Google Scholar 

  107. Grunert M, Dorn C, Cui H, Dunkel I, Schulz K, Schoenhals S, et al. Comparative DNA methylation and gene expression analysis identifies novel genes for structural congenital heart diseases. Cardiovasc Res. 2016;112:464–77.

    Article  CAS  PubMed  Google Scholar 

  108. Radhakrishna U, Albayrak S, Alpay-Savasan Z, Zeb A, Turkoglu O, Sobolewski P, et al. Genome-wide DNA methylation analysis and epigenetic variations associated with congenital aortic valve stenosis (AVS). PLoS One. 2016;11:e0154010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Chung VY, Tan TZ, Huang RL, Lai HC, Huang RY. Loss of discoidin domain receptor 1 (DDR1) via CpG methylation during EMT in epithelial ovarian cancer. Gene. 2017;635:9.

    Article  CAS  PubMed  Google Scholar 

  110. Li Z, Heng J, Yan J, Guo X, Tang L, Chen M, et al. Integrated analysis of gene expression and methylation profiles of 48 candidate genes in breast cancer patients. Breast Cancer Res Treat. 2016;160:371–83.

    Article  CAS  PubMed  Google Scholar 

  111. Wolf C, Garding A, Filarsky K, Bahlo J, Robrecht S, Becker N, et al. NFATC1 activation by DNA hypomethylation in chronic lymphocytic leukemia correlates with clinical staging and can be inhibited by ibrutinib. Int J Cancer. 2018;142:322–33.

    Article  CAS  PubMed  Google Scholar 

  112. Khongsti S, Lamare FA, Shunyu NB, Ghosh S, Maitra A, Ghosh S. Whole genome DNA methylation profiling of oral cancer in ethnic population of Meghalaya, North East India reveals novel genes. Genomics. 2018;110:112–23.

    Article  CAS  PubMed  Google Scholar 

  113. Acs O, Peterfia B, Hollosi P, Luczay A, Torok D, Szabo A. Methylation status of CYP27B1 and IGF2 correlate to BMI SDS in children with obesity. Obes Facts. 2017;10:353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dunstan J, Bressler JP, Moran TH, Pollak JS, Hirsch AG, Bailey-Davis L, et al. Associations of LEP, CRH, ICAM-1, and LINE-1 methylation, measured in saliva, with waist circumference, body mass index, and percent body fat in mid-childhood. Clin Epigenetics. 2017;9:29.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Janjanam VD, Mukherjee N, Lockett GA, Rezwan FI, Kurukulaaratchy R, Mitchell F, et al. Tetanus vaccination is associated with differential DNA-methylation: reduces the risk of asthma in adolescence. Vaccine. 2016;34:6493–501.

    Article  CAS  PubMed  Google Scholar 

  116. Berni Canani R, Paparo L, Nocerino R, Cosenza L, Pezzella V, Di Costanzo M, et al. Differences in DNA methylation profile of Th1 and Th2 cytokine genes are associated with tolerance acquisition in children with IgE-mediated cow’s milk allergy. Clin Epigenetics. 2015;7:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kim EG, Shin HJ, Lee CG, Park HY, Kim YK, Park HW, et al. DNA methylation and not allelic variation regulates STAT6 expression in human T cells. Clin Exp Med. 2010;10:143–52.

    Article  CAS  PubMed  Google Scholar 

  118. Luo Y, Zhou B, Zhao M, Tang J, Lu Q. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol. 2014;39:48–53.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang C, Li J, Huang T, Duan S, Dai D, Jiang D, et al. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget. 2016;7:81255–67.

    PubMed  PubMed Central  Google Scholar 

  120. Li J, Huang Q, Zeng F, Li W, He Z, Chen W, et al. The prognostic value of global DNA hypomethylation in cancer: a meta-analysis. PLoS One. 2014;9:e106290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Liang L, Willis-Owen SAG, Laprise C, Wong KCC, Davies GA, Hudson TJ, et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature. 2015;520:670–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Plusquin M, Guida F, Polidoro S, Vermeulen R, Raaschou-Nielsen O, Campanella G, et al. DNA methylation and exposure to ambient air pollution in two prospective cohorts. Environ Int. 2017;108:127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang IJ, Karmaus WJ, Chen SL, Holloway JW, Ewart S. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin Epigenetics. 2015;7:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Guthikonda K, Zhang H, Nolan VG, Soto-Ramirez N, Ziyab AH, Ewart S, et al. Oral contraceptives modify the effect of GATA3 polymorphisms on the risk of asthma at the age of 18 years via DNA methylation. Clin Epigenetics. 2014;6:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Bollen KA. Structural equations with latent variables. Wiley: New York; 1989.

    Book  Google Scholar 

  126. Muthen B, Asparouhov T, Rebollo I. Advances in behavioral genetics modeling using Mplus: applications of factor mixture modeling to twin data. Twin Res Hum Genet. 2006;9:313–24.

    Article  PubMed  Google Scholar 

  127. Muthén L, Muthén B, editors. Mplus user’s guide. 6th ed. Los Angeles, CA: Muthén & Muthén; 2010.

    Google Scholar 

  128. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Slatkin M. Epigenetic inheritance and the missing heritability problem. Genetics. 2009;182:845–50.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, et al. Cohort profile: pregnancy and childhood epigenetics (PACE) consortium. Int J Epidemiol. 2018;47:22–3u.

    Article  PubMed  Google Scholar 

  131. Kishi R, Araki A, Minatoya M, Itoh S, Goudarzi H, Miyashita C. Birth cohorts in Asia: the importance, advantages, and disadvantages of different-sized cohorts. Sci Total Environ. 2018;615:1143–54.

    Article  CAS  PubMed  Google Scholar 

  132. Kishi R, Araki A, Miyashita C, Itoh S, Minatoya M, Kobayashi S, et al. [Importance of two birth cohorts (n=20,926 and n=514): 15 years’ experience of the Hokkaido study on environment and Children’s health: malformation, development and allergy]. Nihon Eiseigaku Zasshi. 2018;73:164–77.

    Article  Google Scholar 

  133. Gehring U, Casas M, Brunekreef B, Bergstrom A, Bonde JP, Botton J, et al. Environmental exposure assessment in European birth cohorts: results from the ENRIECO project. Environ Health. 2013;12:8.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Houseley J, Hill CS, Rugg-Gunn PJ. Annual meeting of the EpiGeneSys Network of Excellence—advancing epigenetics towards systems biology. BioEssays. 2015;37:592–5.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Krieger N, Davey Smith G. The tale wagged by the DAG: broadening the scope of causal inference and explanation for epidemiology. Int J Epidemiol. 2016;45:1787–808.

    PubMed  Google Scholar 

  136. Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: methods, interpretation and bias. Int J Epidemiol. 2013;42:1511–9.

    Article  PubMed  Google Scholar 

  137. Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, et al. Estimating and testing high-dimensional mediation effects in epigenetic studies. Bioinformatics. 2016;32:3150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Arshad SH, Holloway JW, Karmaus W, Zhang H, Ewart S, Mansfield L, et al. Cohort profile: the Isle of Wight whole population birth cohort (IOWBC). Int J Epidemiol. 2018;47:1043.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Nagin DS, Jones BL, Passos VL, Tremblay RE. Group-based multi-trajectory modeling. Stat Methods Med Res. 2018;27:2015–23.

    Article  PubMed  Google Scholar 

  140. Schubeler D. ESCI award lecture: regulation, function and biomarker potential of DNA methylation. Eur J Clin Investig. 2015;45:288–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Karmaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmaus, W., Ziyab, A.H., Mukherjee, N. (2020). Epigenetics: Strategies for Prevention Research. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics