Skip to main content

Environmental Exposures and Adverse Pregnancy-Related Outcomes

  • Chapter
  • First Online:
Book cover Health Impacts of Developmental Exposure to Environmental Chemicals

Abstract

It has been known that pregnant women are exposed to a number of environmental chemicals and studies have reported that these environmental chemicals are detected from pregnant women of various population. Environmental exposures such as air pollution, pesticides, solvents, heavy metals, and chemicals including persistent organic pollutants (POPs) have implicated in adverse pregnancy-related outcomes. In addition to these environmental chemicals, phthalates and bisphenol A (BPA) are known as ubiquitous environmental chemicals and their endocrine disrupting effects have been reported from animal studies. These chemicals can impact the ability to become pregnant and sustain a healthy pregnancy. Taking trend of environmental chemical levels over the years into consideration is of cardinal importance for investigating adverse birth outcomes because oftentimes associations can be found at high exposure levels such as accidental or occupational settings. From individual studies and meta-analysis, systematic reviews of recent years, evidences on outdoor air pollution during pregnancy, and adverse birth outcomes have been strengthened. Especially, fairly good evidence for maternal exposure to PM2.5 pollution during pregnancy is associated with increased risk of adverse birth outcomes. Heavy metal exposures and PFOA exposure during pregnancy may moderately be associated with adverse birth outcomes; however, not sufficient investigation has been conducted for substitutions for PFOS and PFOA. Besides, it is important to consider concentrations of PFAS in association with adverse birth outcomes as PFOS concentration is decreasing since the Stockholm convention. Inconsistent findings have been reported for phthalates and BPA exposure during pregnancy and birth outcomes. Some of the studies mentioned different influence between male and female infants or sex-specific of environmental exposure on birth outcomes. Studies on genomic analysis, transcriptome analysis, proteome analysis, and epigenome analysis should be accelerated to elucidate mechanisms of observed results from epidemiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1(8489):1077–81.

    Article  CAS  PubMed  Google Scholar 

  2. Sutton P, et al. Toxic environmental chemicals: the role of reproductive health professionals in preventing harmful exposures. Am J Obstet Gynecol. 2012;207(3):164–73.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stillerman KP, et al. Environmental exposures and adverse pregnancy outcomes: a review of the science. Reprod Sci. 2008;15(7):631–50.

    Article  PubMed  Google Scholar 

  4. Windham G, Fenster L. Environmental contaminants and pregnancy outcomes. Fertil Steril. 2008;89(2 Suppl):e111–6.

    Article  PubMed  Google Scholar 

  5. Kishi RA, Miyashita A, Kobayashi C, Miura S, Minatoya RM. The Hokkaido study on environment and children’s health. In: Sata FF, Hanson HM, editors. Pre-emptive medicine: public health aspects of developmental origins of health and disease. Singapore: Springer; 2019.

    Google Scholar 

  6. Kishi R, et al. The Hokkaido Birth Cohort Study on environment and children’s health: cohort profile-updated 2017. Environ Health Prev Med. 2017;22(1):46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98(5):1103–11.

    Article  Google Scholar 

  8. Krieg SA, Shahine LK, Lathi RB. Environmental exposure to endocrine-disrupting chemicals and miscarriage. Fertil Steril. 2016;106(4):941–7.

    Article  CAS  PubMed  Google Scholar 

  9. de Bernis L, et al. Stillbirths: ending preventable deaths by 2030. Lancet. 2016;387(10019):703–16.

    Article  PubMed  Google Scholar 

  10. Zheng D, et al. Factors associated with spontaneous abortion: a cross-sectional study of Chinese populations. Reprod Health. 2017;14(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blencowe H, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162–72.

    Article  PubMed  Google Scholar 

  12. Savitz DA, Murnane P. Behavioral influences on preterm birth: a review. Epidemiology. 2010;21(3):291–9.

    Article  PubMed  Google Scholar 

  13. OECD. CO1.3: Low birth weight, L.a.S.A. Social Policy Division-Directorate of Employment, Editor. 2018. https://doi.org/oecdkorea.org/resource/download/2017/eng/CO_1_3_Low_birth_weight.pdf

  14. de Onis M, Habicht JP. Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr. 1996;64(4):650–8.

    Article  PubMed  Google Scholar 

  15. WHO. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1–452.

    Google Scholar 

  16. Ding G, et al. Application of a global reference for fetal-weight and birthweight percentiles in predicting infant mortality. BJOG. 2013;120(13):1613–21.

    Article  CAS  PubMed  Google Scholar 

  17. Saenger P, et al. Small for gestational age: short stature and beyond. Endocr Rev. 2007;28(2):219–51.

    Article  CAS  PubMed  Google Scholar 

  18. Clayton PE, et al. Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. J Clin Endocrinol Metab. 2007;92(3):804–10.

    Article  CAS  PubMed  Google Scholar 

  19. Zeve D, et al. Small at birth, but how small? The definition of SGA revisited. Horm Res Paediatr. 2016;86(5):357–60.

    Article  CAS  PubMed  Google Scholar 

  20. Ebisu K, et al. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter. Environ Res. 2018;160:358–64.

    Article  CAS  PubMed  Google Scholar 

  21. Zang H, et al. Ambient air pollution and the risk of stillbirth: a population-based prospective birth cohort study in the coastal area of China. Environ Sci Pollut Res Int. 2019;26(7):6717–24.

    Article  CAS  PubMed  Google Scholar 

  22. Yang S, et al. Ambient air pollution the risk of stillbirth: a prospective birth cohort study in Wuhan, China. Int J Hyg Environ Health. 2018;221(3):502–9.

    Article  CAS  PubMed  Google Scholar 

  23. DeFranco E, et al. Air pollution and stillbirth risk: exposure to airborne particulate matter during pregnancy is associated with fetal death. PLoS One. 2015;10(3):e0120594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Faiz AS, et al. Does ambient air pollution trigger stillbirth? Epidemiology. 2013;24(4):538–44.

    Article  PubMed  Google Scholar 

  25. Li Z, et al. Impact of ambient PM2.5 on adverse birth outcome and potential molecular mechanism. Ecotoxicol Environ Saf. 2019;169:248–54.

    Article  CAS  PubMed  Google Scholar 

  26. Pope DP, et al. Risk of low birth weight and stillbirth associated with indoor air pollution from solid fuel use in developing countries. Epidemiol Rev. 2010;32:70–81.

    Article  PubMed  Google Scholar 

  27. Aminu M, et al. Causes of and factors associated with stillbirth in low- and middle-income countries: a systematic literature review. BJOG. 2014;121(Suppl 4):141–53.

    Article  PubMed  Google Scholar 

  28. Blencowe H, et al. National, regional, and worldwide estimates of stillbirth rates in 2015, with trends from 2000: a systematic analysis. Lancet Glob Health. 2016;4(2):e98–e108.

    Article  PubMed  Google Scholar 

  29. Trasande L, Malecha P, Attina TM. Particulate matter exposure and preterm birth: estimates of U.S. attributable burden and economic costs. Environ Health Perspect. 2016;124(12):1913–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malley CS, et al. Preterm birth associated with maternal fine particulate matter exposure: a global, regional and national assessment. Environ Int. 2017;101:173–82.

    Article  PubMed  Google Scholar 

  31. Guo T, et al. The association between ambient PM2.5 exposure and the risk of preterm birth in China: a retrospective cohort study. Sci Total Environ. 2018;633:1453–9.

    Article  CAS  PubMed  Google Scholar 

  32. Rappazzo KM, et al. Exposure to elemental carbon, organic carbon, nitrate, and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000–2005). Environ Health Perspect. 2015;123(10):1059–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laurent O, et al. A statewide nested case-control study of preterm birth and air pollution by source and composition: California, 2001-2008. Environ Health Perspect. 2016;124(9):1479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Basu R, et al. Association between PM2.5 and PM2.5 constituents and preterm delivery in California, 2000-2006. Paediatr Perinat Epidemiol. 2017;31(5):424–34.

    Article  PubMed  Google Scholar 

  35. Slama R, et al. Meeting report: atmospheric pollution and human reproduction. Environ Health Perspect. 2008;116(6):791–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sapkota A, et al. Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. Air Qual Atmos Health. 2012;5(4):369–81.

    Article  CAS  Google Scholar 

  37. Shah PS, Balkhair T. Air pollution and birth outcomes: a systematic review. Environ Int. 2011;37(2):498–516.

    Article  CAS  PubMed  Google Scholar 

  38. Liu C, et al. Different exposure levels of fine particulate matter and preterm birth: a meta-analysis based on cohort studies. Environ Sci Pollut Res Int. 2017;24(22):17976–84.

    Article  PubMed  Google Scholar 

  39. Singh VK, et al. Comparison of polycyclic aromatic hydrocarbon levels in placental tissues of Indian women with full- and preterm deliveries. Int J Hyg Environ Health. 2008;211(5-6):639–47.

    Article  CAS  PubMed  Google Scholar 

  40. Wilhelm M, et al. Traffic-related air toxics and preterm birth: a population-based case-control study in Los Angeles County, California. Environ Health. 2011;10:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li X, et al. Association between ambient fine particulate matter and preterm birth or term low birth weight: an updated systematic review and meta-analysis. Environ Pollut. 2017;227:596–605.

    Article  CAS  PubMed  Google Scholar 

  42. Dadvand P, et al. Maternal exposure to particulate air pollution and term birth weight: a multi-country evaluation of effect and heterogeneity. Environ Health Perspect. 2013;121(3):267–373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Pedersen M, et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Respir Med. 2013;1(9):695–704.

    Article  CAS  PubMed  Google Scholar 

  44. Dedele A, Grazuleviciene R, Miskinyte A. Individual exposure to nitrogen dioxide and adverse pregnancy outcomes in Kaunas study. Int J Environ Health Res. 2017;27(3):230–40.

    Article  CAS  PubMed  Google Scholar 

  45. Coker E, et al. Multi-pollutant exposure profiles associated with term low birth weight in Los Angeles County. Environ Int. 2016;91:1–13.

    Article  CAS  PubMed  Google Scholar 

  46. Stieb DM, et al. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res. 2012;117:100–11.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu M, et al. Maternal low-level lead exposure and fetal growth. Environ Health Perspect. 2010;118(10):1471–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vrijheid M, et al. Environmental pollutants and child health-a review of recent concerns. Int J Hyg Environ Health. 2016;219(4-5):331–42.

    Article  CAS  PubMed  Google Scholar 

  49. Bloom MS, et al. Maternal arsenic exposure and birth outcomes: a comprehensive review of the epidemiologic literature focused on drinking water. Int J Hyg Environ Health. 2014;217(7):709–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Milton AH, et al. A review of the effects of chronic arsenic exposure on adverse pregnancy outcomes. Int J Environ Res Public Health. 2017;14:6.

    Google Scholar 

  51. McDermott S, et al. Systematic review of chromium and nickel exposure during pregnancy and impact on child outcomes. J Toxicol Environ Health A. 2015;78(21-22):1348–68.

    Article  CAS  PubMed  Google Scholar 

  52. Eum JH, et al. Maternal blood manganese level and birth weight: a MOCEH birth cohort study. Environ Health. 2014;13(1):31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zota AR, et al. Maternal blood manganese levels and infant birth weight. Epidemiology. 2009;20(3):367–73.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xia W, et al. A case-control study of maternal exposure to chromium and infant low birth weight in China. Chemosphere. 2016;144:1484–9.

    Article  CAS  PubMed  Google Scholar 

  55. Sun X, et al. Association between prenatal nickel exposure and preterm low birth weight: possible effect of selenium. Environ Sci Pollut Res Int. 2018;25(26):25888–95.

    Article  CAS  PubMed  Google Scholar 

  56. Hu J, et al. Association of adverse birth outcomes with prenatal exposure to vanadium: a population-based cohort study. Lancet Planet Health. 2017;1(6):e230–41.

    Article  PubMed  Google Scholar 

  57. Winckelmans E, et al. Fetal growth and maternal exposure to particulate air pollution--more marked effects at lower exposure and modification by gestational duration. Environ Res. 2015;140:611–8.

    Article  CAS  PubMed  Google Scholar 

  58. Huo X, et al. Maternal urinary metabolites of PAHs and its association with adverse birth outcomes in an intensive e-waste recycling area. Environ Pollut. 2019;245:453–61.

    Article  CAS  PubMed  Google Scholar 

  59. van den Hooven EH, et al. Chronic air pollution exposure during pregnancy and maternal and fetal C-reactive protein levels: the Generation R Study. Environ Health Perspect. 2012;120(5):746–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hall KC, Robinson JC. Association between maternal exposure to pollutant particulate matter 2.5 and congenital heart defects: a systematic review. JBI Database System Rev Implement Rep. 2019;17:1695–716.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rahman A, Kumarathasan P, Gomes J. Infant and mother related outcomes from exposure to metals with endocrine disrupting properties during pregnancy. Sci Total Environ. 2016;569-570:1022–31.

    Article  CAS  PubMed  Google Scholar 

  62. Quansah R, et al. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect. 2015;123(5):412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yorifuji T, et al. Temporal trends of infant and birth outcomes in Minamata after severe methylmercury exposure. Environ Pollut. 2017;231(Pt 2):1586–92.

    Article  CAS  PubMed  Google Scholar 

  64. Itai Y, et al. An epidemiological study of the incidence of abnormal pregnancy in areas heavily contaminated with methylmercury. Environ Sci. 2004;11(2):83–97.

    CAS  PubMed  Google Scholar 

  65. Yorifuji T, Kashima S. Secondary sex ratio in regions severely exposed to methylmercury “Minamata disease”. Int Arch Occup Environ Health. 2016;89(4):659–65.

    Article  CAS  PubMed  Google Scholar 

  66. Ferguson KK, O'Neill MS, Meeker JD. Environmental contaminant exposures and preterm birth: a comprehensive review. J Toxicol Environ Health B Crit Rev. 2013;16(2):69–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Andrews KW, Savitz DA, Hertz-Picciotto I. Prenatal lead exposure in relation to gestational age and birth weight: a review of epidemiologic studies. Am J Ind Med. 1994;26(1):13–32.

    Article  CAS  PubMed  Google Scholar 

  68. Sowers M, et al. Blood lead concentrations and pregnancy outcomes. Arch Environ Health. 2002;57(5):489–95.

    Article  CAS  PubMed  Google Scholar 

  69. Cantonwine D, et al. Critical windows of fetal lead exposure: adverse impacts on length of gestation and risk of premature delivery. J Occup Environ Med. 2010;52(11):1106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vigeh M, et al. Blood lead at currently acceptable levels may cause preterm labour. Occup Environ Med. 2011;68(3):231–4.

    Article  CAS  PubMed  Google Scholar 

  71. Landgren O. Environmental pollution and delivery outcome in southern Sweden: a study with central registries. Acta Paediatr. 1996;85(11):1361–4.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang YL, et al. Effect of environmental exposure to cadmium on pregnancy outcome and fetal growth: a study on healthy pregnant women in China. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2004;39(9):2507–15.

    Article  PubMed  CAS  Google Scholar 

  73. Ahmad SA, et al. Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect. 2001;109(6):629–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang CY, et al. Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environ Res. 2003;91(1):29–34.

    Article  PubMed  Google Scholar 

  75. Myers SL, et al. Maternal drinking water arsenic exposure and perinatal outcomes in inner Mongolia, China. J Epidemiol Community Health. 2010;64(4):325–9.

    Article  CAS  PubMed  Google Scholar 

  76. Xue F, et al. Maternal fish consumption, mercury levels, and risk of preterm delivery. Environ Health Perspect. 2007;115(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  77. Sun H, et al. The effects of prenatal exposure to low-level cadmium, lead and selenium on birth outcomes. Chemosphere. 2014;108:33–9.

    Article  CAS  PubMed  Google Scholar 

  78. Salpietro CD, et al. Cadmium concentration in maternal and cord blood and infant birth weight: a study on healthy non-smoking women. J Perinat Med. 2002;30(5):395–9.

    Article  CAS  PubMed  Google Scholar 

  79. Irgens A, et al. Reproductive outcome in offspring of parents occupationally exposed to lead in Norway. Am J Ind Med. 1998;34(5):431–7.

    Article  CAS  PubMed  Google Scholar 

  80. Berkowitz Z, et al. Lead exposure and birth outcomes in five communities in Shoshone County, Idaho. Int J Hyg Environ Health. 2006;209(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  81. Gundacker C, et al. Perinatal lead and mercury exposure in Austria. Sci Total Environ. 2010;408(23):5744–9.

    Article  CAS  PubMed  Google Scholar 

  82. Garcia-Esquinas E, et al. Lead, mercury and cadmium in umbilical cord blood and its association with parental epidemiological variables and birth factors. BMC Public Health. 2013;13:841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Drouillet-Pinard P, et al. Prenatal mercury contamination: relationship with maternal seafood consumption during pregnancy and fetal growth in the ‘EDEN mother-child’ cohort. Br J Nutr. 2010;104(8):1096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ding G, et al. Prenatal low-level mercury exposure and neonatal anthropometry in rural northern China. Chemosphere. 2013;92(9):1085–9.

    Article  CAS  PubMed  Google Scholar 

  85. Lee BE, et al. Interaction between GSTM1/GSTT1 polymorphism and blood mercury on birth weight. Environ Health Perspect. 2010;118(3):437–43.

    Article  CAS  PubMed  Google Scholar 

  86. Burch JB, et al. Mercury in fish and adverse reproductive outcomes: results from South Carolina. Int J Health Geogr. 2014;13:30.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vejrup K, et al. Prenatal mercury exposure and infant birth weight in the Norwegian Mother and Child Cohort Study. Public Health Nutr. 2014;17(9):2071–80.

    Article  PubMed  Google Scholar 

  88. Johnston JE, et al. Maternal cadmium levels during pregnancy associated with lower birth weight in infants in a North Carolina cohort. PLoS One. 2014;9(10):e109661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Yang J, et al. Maternal urinary cadmium concentrations in relation to preterm birth in the Healthy Baby Cohort Study in China. Environ Int. 2016;94:300–6.

    Article  CAS  PubMed  Google Scholar 

  90. Liu H, et al. Maternal arsenic exposure and birth outcomes: a birth cohort study in Wuhan, China. Environ Pollut. 2018;236:817–23.

    Article  CAS  PubMed  Google Scholar 

  91. Kobayashi S, et al. Association of blood mercury levels during pregnancy with infant birth size by blood selenium levels in the Japan Environment and Children’s Study: a prospective birth cohort. Environ Int. 2019;125:418–29.

    Article  CAS  PubMed  Google Scholar 

  92. Miyashita C, et al. Effects of in utero exposure to polychlorinated biphenyls, methylmercury, and polyunsaturated fatty acids on birth size. Sci Total Environ. 2015;533:256–65.

    Article  CAS  PubMed  Google Scholar 

  93. Jelliffe-Pawlowski LL, et al. Effect of magnitude and timing of maternal pregnancy blood lead (Pb) levels on birth outcomes. J Perinatol. 2006;26(3):154–62.

    Article  CAS  PubMed  Google Scholar 

  94. Zheng T, et al. Effects of environmental exposures on fetal and childhood growth trajectories. Ann Glob Health. 2016;82(1):41–99.

    Article  PubMed  Google Scholar 

  95. Beard J. DDT and human health. Sci Total Environ. 2006;355(1-3):78–89.

    Article  CAS  PubMed  Google Scholar 

  96. Kumar S. Occupational, environmental and lifestyle factors associated with spontaneous abortion. Reprod Sci. 2011;18(10):915–30.

    Article  CAS  PubMed  Google Scholar 

  97. Carlsen E, et al. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305(6854):609–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sharpe RM, Skakkebaek NE. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet. 1993;341(8857):1392–5.

    Article  CAS  PubMed  Google Scholar 

  99. Korrick SA, et al. Association of DDT with spontaneous abortion: a case-control study. Ann Epidemiol. 2001;11(7):491–6.

    Article  CAS  PubMed  Google Scholar 

  100. Venners SA, et al. Preconception serum DDT and pregnancy loss: a prospective study using a biomarker of pregnancy. Am J Epidemiol. 2005;162(8):709–16.

    Article  PubMed  Google Scholar 

  101. Longnecker MP, et al. Maternal serum level of the DDT metabolite DDE in relation to fetal loss in previous pregnancies. Environ Res. 2005;97(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  102. Tsukimori K, et al. Long-term effects of polychlorinated biphenyls and dioxins on pregnancy outcomes in women affected by the Yusho incident. Environ Health Perspect. 2008;116(5):626–30.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schnorr TM, et al. Spontaneous abortion, sex ratio, and paternal occupational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Health Perspect. 2001;109(11):1127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pan X, et al. Association between environmental dioxin-related toxicants exposure and adverse pregnancy outcome: systematic review and meta-analysis. Int J Fertil Steril. 2015;8(4):351–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Eskenazi B, et al. Maternal serum dioxin levels and birth outcomes in women of Seveso, Italy. Environ Health Perspect. 2003;111(7):947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Le TN, Johansson A. Impact of chemical warfare with agent orange on women's reproductive lives in Vietnam: a pilot study. Reprod Health Matters. 2001;9(18):156–64.

    Article  CAS  PubMed  Google Scholar 

  107. Yorifuji T, et al. Regional impact of exposure to a polychlorinated biphenyl and polychlorinated dibenzofuran mixture from contaminated rice oil on stillbirth rate and secondary sex ratio. Environ Int. 2013;59:12–5.

    Article  CAS  PubMed  Google Scholar 

  108. Qu Y, et al. Risk factors of stillbirth in rural China: a national cohort study. Sci Rep. 2019;9(1):365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Razi S, et al. Exposure to pistachio pesticides and stillbirth: a case-control study. Epidemiol Health. 2016;38:e2016016.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Roncati L, Piscioli F, Pusiol T. The endocrine disruptors among the environmental risk factors for stillbirth. Sci Total Environ. 2016;563-564:1086–7.

    Article  CAS  PubMed  Google Scholar 

  111. Longnecker MP, et al. Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth. Lancet. 2001;358(9276):110–4.

    Article  CAS  PubMed  Google Scholar 

  112. Bergonzi R, et al. Persistent organochlorine compounds in fetal and maternal tissues: evaluation of their potential influence on several indicators of fetal growth and health. Sci Total Environ. 2011;409(15):2888–93.

    Article  CAS  PubMed  Google Scholar 

  113. Ribas-Fito N, et al. Association of hexachlorobenzene and other organochlorine compounds with anthropometric measures at birth. Pediatr Res. 2002;52(2):163–7.

    Article  CAS  PubMed  Google Scholar 

  114. Fenster L, et al. Association of in utero organochlorine pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect. 2006;114(4):597–602.

    Article  CAS  PubMed  Google Scholar 

  115. Torres-Arreola L, et al. Preterm birth in relation to maternal organochlorine serum levels. Ann Epidemiol. 2003;13(3):158–62.

    Article  PubMed  Google Scholar 

  116. Saxena MC, et al. Organochlorine pesticides in specimens from women undergoing spontaneous abortion, premature of full-term delivery. J Anal Toxicol. 1981;5(1):6–9.

    Article  CAS  PubMed  Google Scholar 

  117. Pathak R, et al. Maternal and cord blood levels of organochlorine pesticides: association with preterm labor. Clin Biochem. 2009;42(7-8):746–9.

    Article  CAS  PubMed  Google Scholar 

  118. Wassermann M, et al. Premature delivery and organochlorine compounds: polychlorinated biphenyls and some organochlorine insecticides. Environ Res. 1982;28(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  119. Longnecker MP, et al. Maternal levels of polychlorinated biphenyls in relation to preterm and small-for-gestational-age birth. Epidemiology. 2005;16(5):641–7.

    Article  PubMed  Google Scholar 

  120. Wojtyniak BJ, et al. Association of maternal serum concentrations of 2,2', 4,4'5,5'-hexachlorobiphenyl (CB-153) and 1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p'-DDE) levels with birth weight, gestational age and preterm births in Inuit and European populations. Environ Health. 2010;9:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Govarts E, et al. Birth weight and prenatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE): a meta-analysis within 12 European Birth Cohorts. Environ Health Perspect. 2012;120(2):162–70.

    Article  CAS  PubMed  Google Scholar 

  122. Revich B, et al. Dioxin exposure and public health in Chapaevsk, Russia. Chemosphere. 2001;43(4-7):951–66.

    Article  CAS  PubMed  Google Scholar 

  123. Weisskopf MG, et al. Maternal exposure to Great Lakes sport-caught fish and dichlorodiphenyl dichloroethylene, but not polychlorinated biphenyls, is associated with reduced birth weight. Environ Res. 2005;97(2):149–62.

    Article  CAS  PubMed  Google Scholar 

  124. Siddiqui MK, et al. Persistent chlorinated pesticides and intra-uterine foetal growth retardation: a possible association. Int Arch Occup Environ Health. 2003;76(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  125. Konishi K, et al. Prenatal exposure to PCDDs/PCDFs and dioxin-like PCBs in relation to birth weight. Environ Res. 2009;109(7):906–13.

    Article  CAS  PubMed  Google Scholar 

  126. Kobayashi S, et al. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women. Toxicol Lett. 2013;219(3):269–78.

    Article  CAS  PubMed  Google Scholar 

  127. Kobayashi S, et al. Dioxin-metabolizing genes in relation to effects of prenatal dioxin levels and reduced birth size: The Hokkaido study. Reprod Toxicol. 2017;67:111–6.

    Article  CAS  PubMed  Google Scholar 

  128. Karmaus W, Zhu X. Maternal concentration of polychlorinated biphenyls and dichlorodiphenyl dichlorethylene and birth weight in Michigan fish eaters: a cohort study. Environ Health. 2004;3(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gladen BC, et al. Persistent organochlorine compounds and birth weight. Ann Epidemiol. 2003;13(3):151–7.

    Article  PubMed  Google Scholar 

  130. Farhang L, et al. Association of DDT and DDE with birth weight and length of gestation in the child health and development studies, 1959-1967. Am J Epidemiol. 2005;162(8):717–25.

    Article  PubMed  Google Scholar 

  131. Tan J, et al. Exposure to persistent organic pollutants in utero and related maternal characteristics on birth outcomes: a multivariate data analysis approach. Chemosphere. 2009;74(3):428–33.

    Article  CAS  PubMed  Google Scholar 

  132. Murphy LE, et al. Maternal serum preconception polychlorinated biphenyl concentrations and infant birth weight. Environ Health Perspect. 2010;118(2):297–302.

    Article  CAS  PubMed  Google Scholar 

  133. Sonneborn D, et al. Prenatal polychlorinated biphenyl exposures in eastern Slovakia modify effects of social factors on birthweight. Paediatr Perinat Epidemiol. 2008;22(3):202–13.

    Article  PubMed  Google Scholar 

  134. Kobayashi S, et al. Gender-specific association of exposure to non-dioxin-like polychlorinated biphenyls during pregnancy with methylation levels of H19 and long interspersed nuclear element-1 in cord blood in the Hokkaido study. Toxicology. 2017;390:135–45.

    Article  CAS  PubMed  Google Scholar 

  135. Govarts E, et al. Prenatal exposure to endocrine disrupting chemicals and risk of being born small for gestational age: pooled analysis of seven European birth cohorts. Environ Int. 2018;115:267–78.

    Article  CAS  PubMed  Google Scholar 

  136. Lauritzen HB, et al. Maternal serum levels of perfluoroalkyl substances and organochlorines and indices of fetal growth: a Scandinavian case-cohort study. Pediatr Res. 2017;81(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  137. Chand S, et al. CYP17A1 gene polymorphisms and environmental exposure to organochlorine pesticides contribute to the risk of small for gestational age. Eur J Obstet Gynecol Reprod Biol. 2014;180:100–5.

    Article  CAS  PubMed  Google Scholar 

  138. Apelberg BJ, et al. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect. 2007;115(11):1670–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Savitz DA, et al. Relationship of perfluorooctanoic acid exposure to pregnancy outcome based on birth records in the mid-Ohio Valley. Environ Health Perspect. 2012;120(8):1201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Meng Q, et al. Prenatal exposure to perfluoroalkyl substances and birth outcomes; an updated analysis from the Danish National Birth Cohort. Int J Environ Res Public Health. 2018;15(9):E1832.

    Article  PubMed  CAS  Google Scholar 

  141. Whitworth KW, et al. Perfluorinated compounds in relation to birth weight in the Norwegian Mother and Child Cohort Study. Am J Epidemiol. 2012;175(12):1209–16.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Chen MH, et al. Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PLoS One. 2012;7(8):e42474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wu K, et al. Association between maternal exposure to perfluorooctanoic acid (PFOA) from electronic waste recycling and neonatal health outcomes. Environ Int. 2012;48:1–8.

    Article  PubMed  CAS  Google Scholar 

  144. Johnson PI, et al. The Navigation Guide - evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122(10):1028–39.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Bach CC, et al. Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: a systematic review. Crit Rev Toxicol. 2015;45(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  146. Kobayashi S, et al. Effects of prenatal perfluoroalkyl acid exposure on cord blood IGF2/H19 methylation and ponderal index: The Hokkaido Study. J Expo Sci Environ Epidemiol. 2017;27(3):251–9.

    Article  CAS  PubMed  Google Scholar 

  147. Washino N, et al. Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health Perspect. 2009;117(4):660–7.

    Article  CAS  PubMed  Google Scholar 

  148. Minatoya M, et al. Association of prenatal exposure to perfluoroalkyl substances with cord blood adipokines and birth size: The Hokkaido Study on environment and children’s health. Environ Res. 2017;156:175–82.

    Article  CAS  PubMed  Google Scholar 

  149. Tsai MS, et al. Determinants and temporal trends of perfluoroalkyl substances in pregnant women: The Hokkaido Study on Environment and Children’s Health. Int J Environ Res Public Health. 2018;15(5):E989.

    Article  PubMed  CAS  Google Scholar 

  150. Okada E, et al. Temporal trends of perfluoroalkyl acids in plasma samples of pregnant women in Hokkaido, Japan, 2003-2011. Environ Int. 2013;60:89–96.

    Article  CAS  PubMed  Google Scholar 

  151. Wu K, et al. Polybrominated diphenyl ethers in umbilical cord blood and relevant factors in neonates from Guiyu, China. Environ Sci Technol. 2010;44(2):813–9.

    Article  CAS  PubMed  Google Scholar 

  152. Lignell S, et al. Prenatal exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may influence birth weight among infants in a Swedish cohort with background exposure: a cross-sectional study. Environ Health. 2013;12:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chao HR, et al. Levels of polybrominated diphenyl ethers (PBDEs) in breast milk from central Taiwan and their relation to infant birth outcome and maternal menstruation effects. Environ Int. 2007;33(2):239–45.

    Article  CAS  PubMed  Google Scholar 

  154. Eskenazi B, et al. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect. 2004;112(10):1116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sathyanarayana S, et al. Maternal pesticide use and birth weight in the agricultural health study. J Agromedicine. 2010;15(2):127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ling C, et al. Prenatal exposure to ambient pesticides and preterm birth and term low birthweight in agricultural regions of California. Toxics. 2018;6(3):E41.

    Article  PubMed  CAS  Google Scholar 

  157. Figa-Talamanca I. Occupational risk factors and reproductive health of women. Occup Med. 2006;56(8):521–31.

    Article  Google Scholar 

  158. Rauch SA, et al. Associations of prenatal exposure to organophosphate pesticide metabolites with gestational age and birth weight. Environ Health Perspect. 2012;120(7):1055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Larsen AE, Gaines SD, Deschenes O. Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California. Nat Commun. 2017;8(1):302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Hanke W, et al. The use of pesticides in a Polish rural population and its effect on birth weight. Int Arch Occup Environ Health. 2003;76(8):614–20.

    Article  PubMed  Google Scholar 

  161. Saillenfait AM, Ndiaye D, Sabate JP. Pyrethroids: exposure and health effects--an update. Int J Hyg Environ Health. 2015;218(3):281–92.

    Article  CAS  PubMed  Google Scholar 

  162. Mytton OT, et al. Safety of benzyl benzoate lotion and permethrin in pregnancy: a retrospective matched cohort study. BJOG. 2007;114(5):582–7.

    Article  CAS  PubMed  Google Scholar 

  163. Kennedy D, et al. Pregnancy outcome following exposure to permethrin and use of teratogen information. Am J Perinatol. 2005;22(2):87–90.

    Article  CAS  PubMed  Google Scholar 

  164. Zhang J, et al. Prenatal pyrethroid insecticide exposure and thyroid hormone levels and birth sizes of neonates. Sci Total Environ. 2014;488-489:275–9.

    Article  CAS  PubMed  Google Scholar 

  165. Lovekamp TN, Davis BJ. Mono-(2-ethylhexyl) phthalate suppresses aromatase transcript levels and estradiol production in cultured rat granulosa cells. Toxicol Appl Pharmacol. 2001;172(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  166. Lovekamp-Swan T, Davis BJ. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect. 2003;111(2):139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Toft G, et al. Association between pregnancy loss and urinary phthalate levels around the time of conception. Environ Health Perspect. 2012;120(3):458–63.

    Article  CAS  PubMed  Google Scholar 

  168. Mu D, et al. Levels of phthalate metabolites in urine of pregnant women and risk of clinical pregnancy loss. Environ Sci Technol. 2015;49(17):10651–7.

    Article  CAS  PubMed  Google Scholar 

  169. Huang Y, et al. Phthalate levels in cord blood are associated with preterm delivery and fetal growth parameters in Chinese women. PLoS One. 2014;9(2):e87430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. JAMA Pediatr. 2014;168(1):61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Ferguson KK, et al. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environ Int. 2014;70:118–24.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Ferguson KK, et al. Mediation of the relationship between maternal phthalate exposure and preterm birth by oxidative stress with repeated measurements across pregnancy. Environ Health Perspect. 2017;125(3):488–94.

    Article  CAS  PubMed  Google Scholar 

  173. Meeker JD, et al. Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environ Health Perspect. 2009;117(10):1587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Adibi JJ, et al. Maternal urinary metabolites of Di-(2-Ethylhexyl) phthalate in relation to the timing of labor in a US multicenter pregnancy cohort study. Am J Epidemiol. 2009;169(8):1015–24.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lenters V, et al. Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: multi-pollutant models based on elastic net regression. Environ Health Perspect. 2016;124(3):365–72.

    Article  CAS  PubMed  Google Scholar 

  176. Ashley-Martin J, et al. A birth cohort study to investigate the association between prenatal phthalate and bisphenol A exposures and fetal markers of metabolic dysfunction. Environ Health. 2014;13:84.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Minatoya M, et al. Prenatal di-2-ethylhexyl phthalate exposure and cord blood adipokine levels and birth size: The Hokkaido Study on Environment and Children’s Health. Sci Total Environ. 2017;579:606–11.

    Article  CAS  PubMed  Google Scholar 

  178. Minatoya M, et al. Association between prenatal bisphenol A and phthalate exposures and fetal metabolic related biomarkers: The Hokkaido Study on Environment and Children’s Health. Environ Res. 2018;161:505–11.

    Article  CAS  PubMed  Google Scholar 

  179. Wassenaar PNH, Legler J. Systematic review and meta-analysis of early life exposure to di(2-ethylhexyl) phthalate and obesity related outcomes in rodents. Chemosphere. 2017;188:174–81.

    Article  CAS  PubMed  Google Scholar 

  180. Bloom MS, et al. Racial disparity in maternal phthalates exposure; association with racial disparity in fetal growth and birth outcomes. Environ Int. 2019;127:473–86.

    Article  CAS  PubMed  Google Scholar 

  181. Varayoud J, et al. Long-lasting effects of neonatal bisphenol A exposure on the implantation process. Vitam Horm. 2014;94:253–75.

    Article  CAS  PubMed  Google Scholar 

  182. Bosquiazzo VL, et al. Effects of neonatal exposure to bisphenol A on steroid regulation of vascular endothelial growth factor expression and endothelial cell proliferation in the adult rat uterus. Biol Reprod. 2010;82(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  183. Lathi RB, et al. Conjugated bisphenol A in maternal serum in relation to miscarriage risk. Fertil Steril. 2014;102(1):123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shen Y, et al. Higher urinary bisphenol A concentration is associated with unexplained recurrent miscarriage risk: evidence from a case-control study in eastern China. PLoS One. 2015;10(5):e0127886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Cantonwine D, et al. Bisphenol a exposure in Mexico City and risk of prematurity: a pilot nested case control study. Environ Health. 2010;9:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Cantonwine DE, et al. Urinary bisphenol A levels during pregnancy and risk of preterm birth. Environ Health Perspect. 2015;123(9):895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Behnia F, et al. High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery. J Matern Fetal Neonatal Med. 2016;29(22):3583–9.

    Article  CAS  PubMed  Google Scholar 

  188. Patel CJ, et al. Investigation of maternal environmental exposures in association with self-reported preterm birth. Reprod Toxicol. 2014;45:1–7.

    Article  CAS  PubMed  Google Scholar 

  189. Miao M, et al. In utero exposure to bisphenol-A and its effect on birth weight of offspring. Reprod Toxicol. 2011;32(1):64–8.

    Article  CAS  PubMed  Google Scholar 

  190. Chou WC, et al. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan. Environ Health. 2011;10:94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Huo W, et al. Maternal urinary bisphenol A levels and infant low birth weight: a nested case-control study of the Health Baby Cohort in China. Environ Int. 2015;85:96–103.

    Article  CAS  PubMed  Google Scholar 

  192. Lee BE, et al. Prenatal bisphenol A and birth outcomes: MOCEH (Mothers and Children’s Environmental Health) study. Int J Hyg Environ Health. 2014;217(2-3):328–34.

    Article  CAS  PubMed  Google Scholar 

  193. Philippat C, et al. Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ Health Perspect. 2012;120(3):464–70.

    Article  CAS  PubMed  Google Scholar 

  194. Padmanabhan V, et al. Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol. 2008;28(4):258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wolff MS, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116(8):1092–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Slama R, et al. Epidemiologic tools to study the influence of environmental factors on fecundity and pregnancy-related outcomes. Epidemiol Rev. 2014;36:148–64.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Irving RJ, et al. Adult cardiovascular risk factors in premature babies. Lancet. 2000;355(9221):2135–6.

    Article  CAS  PubMed  Google Scholar 

  198. de Jong M, Cranendonk A, van Weissenbruch MM. Components of the metabolic syndrome in early childhood in very-low-birth-weight infants and term small and appropriate for gestational age infants. Pediatr Res. 2015;78(4):457–61.

    Article  PubMed  CAS  Google Scholar 

  199. Hofman PL, et al. Premature birth and later insulin resistance. N Engl J Med. 2004;351(21):2179–86.

    Article  CAS  PubMed  Google Scholar 

  200. Bellou V, et al. Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLoS One. 2018;13(3):e0194127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Rogers LK, Velten M. Maternal inflammation, growth retardation, and preterm birth: insights into adult cardiovascular disease. Life Sci. 2011;89(13-14):417–21.

    Article  CAS  PubMed  Google Scholar 

  202. Roggero P, et al. Is term newborn body composition being achieved postnatally in preterm infants? Early Hum Dev. 2009;85(6):349–52.

    Article  PubMed  Google Scholar 

  203. Johnson MJ, et al. Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis. Pediatrics. 2012;130(3):e640–9.

    Article  PubMed  Google Scholar 

  204. Ratnasingham A, et al. Review: is rapid fat accumulation in early life associated with adverse later health outcomes? Placenta. 2017;54:125–30.

    Article  PubMed  Google Scholar 

  205. Low Birth Weight and Nephron Number Working Group. The impact of kidney development on the life course: a consensus document for action. Nephron. 2017;136(1):3–49.

    Article  Google Scholar 

  206. Korzeniewski SJ, et al. Neurodevelopment at age 10 years of children born <28 weeks with fetal growth restriction. Pediatrics. 2017;140(5):e20170697.

    Article  PubMed  Google Scholar 

  207. Arthursson PSH, et al. Atypical neuronal activation during a spatial working memory task in 13-year-old very preterm children. Hum Brain Mapp. 2017;38(12):6172–84.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Neubauer V, et al. Bronchopulmonary dysplasia is associated with delayed structural brain maturation in preterm infants. Neonatology. 2015;107(3):179–84.

    Article  PubMed  Google Scholar 

  209. Linsell L, et al. Prognostic factors for behavioral problems and psychiatric disorders in children born very preterm or very low birth weight: a systematic review. J Dev Behav Pediatr. 2016;37(1):88–102.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Linsell L, et al. Prognostic factors for poor cognitive development in children born very preterm or with very low birth weight: a systematic review. JAMA Pediatr. 2015;169(12):1162–72.

    Article  PubMed  PubMed Central  Google Scholar 

  211. JAMA Patient Page. Low birth weight. JAMA. 2002;287(2):270.

    Article  Google Scholar 

  212. Kelishadi R, et al. Low birthweight or rapid catch-up growth: which is more associated with cardiovascular disease and its risk factors in later life? A systematic review and cryptanalysis. Paediatr Int Child Health. 2015;35(2):110–23.

    Article  PubMed  Google Scholar 

  213. Rasyid H, Bakri S. Intra-uterine growth retardation and development of hypertension. Acta Med Indones. 2016;48(4):320–4.

    PubMed  Google Scholar 

  214. Belbasis L, et al. Birth weight in relation to health and disease in later life: an umbrella review of systematic reviews and meta-analyses. BMC Med. 2016;14(1):147.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Saad NJ, et al. Birth weight and lung function in adulthood: a systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(6):994–1004.

    Article  PubMed  Google Scholar 

  216. Rosenberg A. The IUGR newborn. Semin Perinatol. 2008;32(3):219–24.

    Article  PubMed  Google Scholar 

  217. Roth CL, Sathyanarayana S. Mechanisms affecting neuroendocrine and epigenetic regulation of body weight and onset of puberty: potential implications in the child born small for gestational age (SGA). Rev Endocr Metab Disord. 2012;13(2):129–40.

    Article  PubMed  Google Scholar 

  218. Yajnik CS. The lifecycle effects of nutrition and body size on adult adiposity, diabetes and cardiovascular disease. Obes Rev. 2002;3(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  219. Ibanez L, et al. Low body adiposity and high leptinemia in breast-fed infants born small-for-gestational-age. J Pediatr. 2010;156(1):145–7.

    Article  PubMed  Google Scholar 

  220. Ibanez L, et al. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab. 2006;91(6):2153–8.

    Article  CAS  PubMed  Google Scholar 

  221. Lei X, et al. The optimal postnatal growth trajectory for term small for gestational age babies: a prospective cohort study. J Pediatr. 2015;166(1):54–8.

    Article  PubMed  Google Scholar 

  222. Mericq V, et al. Long-term metabolic risk among children born premature or small for gestational age. Nat Rev Endocrinol. 2017;13(1):50–62.

    Article  CAS  PubMed  Google Scholar 

  223. Roth CL, DiVall S. Consequences of early life programing by genetic and environmental influences: a synthesis regarding pubertal timing. Endocr Dev. 2016;29:134–52.

    Article  CAS  PubMed  Google Scholar 

  224. Wingren CJ, Agardh D, Merlo J. Revisiting the risk of celiac disease in children born small for gestational age: a sibling design perspective. Scand J Gastroenterol. 2012;47(6):632–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Grants-in-Aid for Scientific Research from the Japan Ministry of Health, Labour, and Welfare; and the Japan Agency for Medical Research and Development(AMED) under Grant Number JP18gk0110032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Machiko Minatoya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minatoya, M., Hanaoka, T., Kishi, R. (2020). Environmental Exposures and Adverse Pregnancy-Related Outcomes. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics