Skip to main content

Adverse Outcome Pathways for Developmental Toxicity

  • Chapter
  • First Online:
Health Impacts of Developmental Exposure to Environmental Chemicals

Abstract

Adverse Outcome Pathways (AOPs) (frameworks for organizing knowledge about the etiology of an adverse phenotypic outcome) for developmental toxicity are still in their infancy yet represent the culmination of literally centuries of thinking and experimentation. Throughout history people have wondered about the origins of birth defects. It was not until the late nineteenth century that experimental teratology demonstrated that development of embryos could be predictably perturbed by noxious agents, and not until the twentieth century did those experiments include mammalian species. In the mid- to late twentieth century scientists began to design experiments in multiple species to understand the etiology of birth defects. Progress was slow due to limitations in both knowledge of developmental biology and technology. These studies typically took place in individual scientists’ laboratories, so lack of collaboration was another impediment. Nevertheless, ideas and experimentation abounded, as in the case of the notorious human teratogen thalidomide, which spurred research producing dozens of hypotheses about mechanisms of teratogenesis and the biology underlying the stark species differences in sensitivity. Developmental biologists began to uncover molecular signaling pathways critical for normal morphogenesis and new approaches to studying them. In the first decade of the twenty-first century, teratologists, developmental biologists, and toxicologists came together first to advocate exploiting new knowledge about evolutionarily conserved signaling pathways to design assays for developmental toxicity done in vitro or in alternative species, and again to advocate for development and application of new approaches including high-throughput batteries of in vitro assays using human materials and robotic instrumentation to speed the accrual of new knowledge. At the same time, rapid advances in computational capabilities spawned in silico models of morphogenesis and powerful cheminformatic approaches. Online databases now provide public access to an ever-expanding volume of data and information, and collaborative tools provide accessible platforms for collective thinking. For AOPs, this includes the AOPwiki (http://aopkb.org/), a public repository for AOPs across the broad field of toxicology that allows for public comments on, and contributions to, AOPs under development. There are at present few AOPs for developmental toxicity in the AOPwiki, but the opportunities are great for this valuable resource. This chapter will briefly recount some historical milestones in teratology and articulate several illustrative examples of research on mechanisms of normal and abnormal development that have served to provide the bricks and mortar from which AOPS for developmental toxicity can be built. AOPs emerging from this knowledge are presented to demonstrate the value of this approach and finally, remaining hurdles to effectively applying the AOP framework to human risk assessments will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Research Council. Scientific frontiers in developmental toxicology and risk assessment. Washington, DC: The National Academies Press; 2000.

    Google Scholar 

  2. National Research Council. Toxicity testing in the 21st century: a vision and a strategy. Washington, DC: The National Academies Press; 2007.

    Google Scholar 

  3. Scialli AR, Daston G, Chen C, Coder PS, Euling SY, Foreman J, Hoberman AM, Hui J, Knudsen T, Makris SL, Morford L, Piersma AH, Stanislaus D, Thompson KE. Rethinking developmental toxicity testing: evolution or revolution? Birth Defects Res. 2018;110:840–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrano JA, Tietge JE, Villeneuve DL. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29:730–41.

    Article  CAS  PubMed  Google Scholar 

  5. OECD. Guidance document on developing and assessing adverse outcome pathways. In: Series on testing and assessment, No. 184, Vol. 6, p. 45. Organization for Economic Cooperation and Development, Environment Directorate, Paris, France. 2013.

    Google Scholar 

  6. Vinken M. The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology. 2013;312:158–65.

    Article  CAS  PubMed  Google Scholar 

  7. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M. Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci. 2014;142:312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M. Adverse outcome pathway development II: best practices. Toxicol Sci. 2014;142:321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Villeneuve DL, Angrish MM, Fortin MC, Katsiadaki I, Leonard M, Margiotta-Casaluci L, Munn S, O'Brien JM, Pollesch NL, Smith LC, Zhang X, Knapen D. Adverse outcome pathway networks II: network analytics. Environ Toxicol Chem. 2018;37:1734–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Edwards SW, Tan YM, Villeneuve DL, Meek ME, McQueen CA. Adverse outcome pathways-organizing toxicological information to improve decision making. J Pharmacol Exp Ther. 2016;356:170–81.

    Article  CAS  PubMed  Google Scholar 

  11. Knapen D, Angrish MM, Fortin MC, Katsiadaki I, Leonard M, Margiotta-Casaluci L, Munn S, O'Brien JM, Pollesch N, Smith LC, Zhang X, Villeneuve DL. Adverse outcome pathway networks I: development and applications. Environ Toxicol Chem. 2018;37:1723–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ankley GT, Edwards SW. The adverse outcome pathway: a multifaceted framework supporting 21st century toxicology. Curr Opin Toxicol. 2018;9:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tollefsen KE, Scholz S, Cronin MT, Edwards SW, de Knecht J, Crofton K, Garcia-Reyero N, Hartung T, Worth A, Patlewicz G. Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol. 2014;70:629–40.

    Article  PubMed  Google Scholar 

  14. Martens M, Verbruggen T, Nymark P, Grafström R, Burgoon LD, Aladjov H, Torres Andón F, Evelo CT, Willighagen EL. Introducing WikiPathways as a data-source to support adverse outcome pathways for regulatory risk assessment of chemicals and nanomaterials. Front Genet. 2018;9:661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pittman ME, Edwards SW, Ives C, Mortensen HM. AOP-DB: a database resource for the exploration of adverse outcome pathways through integrated association networks. Toxicol Appl Pharmacol. 2018;343:71–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dareste C. Récherches sur la production artificielle des monstruositiés, ou essais de tératogénie expérimentale. Paris: Reinwald; 1877.

    Book  Google Scholar 

  17. Dareste C. Récherches sur la production artificielle des monstruositiés, ou essais de tératogénie expérimentale. 2nd ed. Paris: Reinwald; 1891.

    Google Scholar 

  18. Warkany J, Nelson RC. Appearance of skeletal abnormalities in the offspring of rats reared on a deficient diet. Science. 1940;92:383–4.

    Article  CAS  PubMed  Google Scholar 

  19. Warkany J, Schraffenberger E. Congenital malformations induced in rats by roentgen rays. Am J Roentgenol Radium Ther. 1944;57:455–63.

    Google Scholar 

  20. Gregg NM. Congenital cataract following German measles in the mother. Trans Ophthalmol Soc Aust. 1941;3:35–40.

    Google Scholar 

  21. Thiersch JB. Therapeutic abortions with a folic acid antagonist 4-aminopteroylglutamic acid administered by the oral route. Am J Obstet Gynecol. 1952;63:1298–304.

    Article  CAS  PubMed  Google Scholar 

  22. Lenz W. Kindliche Missbildungen nach Medikament-Einnahme während der Gravidität? Dtsch Med Wochenschr. 1961;86:2555–6.

    Google Scholar 

  23. McBride WG. Thalidomide and congenital anomalies. Lancet. 1961;2:1358.

    Article  Google Scholar 

  24. Wilson JG. Environment and birth defects. New York: Academic; 1973.

    Google Scholar 

  25. Baker N, Boobis A, Burgoon L, Carney E, Currie R, Fritsche E, Knudsen T, Laffont M, Piersma AH, Poole A, Schneider S, Daston G. Building a developmental toxicity ontology. Birth Defects Res. 2018;110:502–18.

    Article  CAS  PubMed  Google Scholar 

  26. Grabowski CT, Paar JA. The teratogenic effects of graded doses of hypoxia on the chick embryo. Am J Anat. 1858;103:313–48.

    Article  Google Scholar 

  27. Grabowski CT. A quantitative study of the lethal and teratogenic effects of hypoxia on the three-day chick embryo. Am J Anat. 1961;109:25–36.

    Article  CAS  PubMed  Google Scholar 

  28. Grabowski CT. Lactic acid accumulation as a cause of hypoxia-induced malformations in the chick embryo. Science. 1961;134:1359–60.

    Article  CAS  PubMed  Google Scholar 

  29. Grabowski CT. Teratogenic significance of ionic and fluid imbalances. Science. 1963;142:1064–5.

    Article  CAS  PubMed  Google Scholar 

  30. Grabowski CT. The etiology of hypoxia-induced malformations in the chick embryo. J Exp Zool. 1964;157:307–26.

    Article  CAS  PubMed  Google Scholar 

  31. Grabowski CT. Physiological changes in the bloodstream of chick embryos exposed to teratogenic doses of hypoxia. Dev Biol. 1966;13:199–213.

    Article  CAS  PubMed  Google Scholar 

  32. Grabowski CT, Tsai ET, Toben HR. The effects of teratogenic doses of hypoxia on the blood pressure of chick embryos. Teratology. 1969;2:67–76.

    Article  CAS  PubMed  Google Scholar 

  33. Webster WS, Abela D. The effect of hypoxia in development. Birth Defects Res. 2007;81:215–28.

    Article  CAS  Google Scholar 

  34. Holmes LB, Westgate MN, Nasri H, Toufaily MH. Malformations attributed to the process of vascular disruption. Birth Defects Res. 2018;110:98–107.

    Article  CAS  PubMed  Google Scholar 

  35. Shuey DL, Lau C, Logsdon TR, et al. Biologically based dose–response modeling in developmental toxicology: biochemical and cellular sequelae of 5-fluorouracil exposure in the developing rat. Toxicol Appl Pharmacol. 1994;126:129–44.

    Article  CAS  PubMed  Google Scholar 

  36. Stephens T. Proposed mechanisms of action in thalidomide embryopathy. Teratology. 1988;38:229–39.

    Article  CAS  PubMed  Google Scholar 

  37. D’Amato RJ, Loughman MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci. 1994;91:4082–5.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Joussen AM, Germann T, Kirchhof B. Effect of thalidomide and structurally related compounds on cornela angiogenesis is comparable to their teratological potency. Graefes Arch Clin Exp Ophthalmol. 1999;237:952–61.

    Article  CAS  PubMed  Google Scholar 

  39. Sauer H, Gunther J, Hescheler J, Wartenberg M. Thalidomide inhibits angiogenesis in embryoid bodies by the generation of hydroxyl radicals. Am J Pathol. 2000;56:151–8.

    Article  Google Scholar 

  40. Stephens TD, Bunde CJ, Fillmore BJ. Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol. 2000;59:1489–99.

    Article  CAS  PubMed  Google Scholar 

  41. Therapontos C, Erskine L, Gardner EER, Figg WD, Vargesson N. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci U S A. 2009;106:8573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neubert R, Hinz N, Thiel R, Neubert D. Down-regulation of adhesion receptors on cells of primate embryos as a probable mechanism of the teratogenic action of thalidomide. Life Sci. 1996;58:295–316.

    Article  CAS  PubMed  Google Scholar 

  43. Parman T, Wiley MJ, Wells PG. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med. 1999;5:582–5.

    Article  CAS  PubMed  Google Scholar 

  44. Argiles JM, Carbo N, Lopez-Soriano FJ. Was tumour necrosis factor-alpha responsible for the fetal malformations associated with thalidomide in the early 1960’s? Med Hypotheses. 1998;50:313–8.

    Article  CAS  PubMed  Google Scholar 

  45. Stephens TD, Bunde CJW, Torres RD, et al. Thalidomide inhibits limb development through its antagonism of IFG-I+FGF-2+heparin. Teratology. 1998;57:112.

    Google Scholar 

  46. Stephens TD, Fillmore BJ. Thalidomide embryopathy: proposed mechanism of action. Teratology. 2000;61:189–95.

    Article  CAS  PubMed  Google Scholar 

  47. Hansen JM, Harris KK, Philbert MA, Harris C. Thalidomide modulates nuclear redox status and preferentially depletes glutathione in rabbit limb versus rat limb. J Pharmacol Exp Ther. 2002;300:768–76.

    Article  CAS  PubMed  Google Scholar 

  48. Hansen JM, Harris C. A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-kappaB pathway. Antioxid Redox Signal. 2004;6:1–14.

    Article  CAS  PubMed  Google Scholar 

  49. Ito T, Ando H, Handa H. Teratogenic effects of thalidomide: molecular mechanisms. Cell Mol Life Sci. 2011;68:1569–79.

    Article  CAS  PubMed  Google Scholar 

  50. Ito T, Handa H. Deciphering the mystery of thalidomide teratogenicity. Congenit Anom. 2012;52:1–7.

    Article  CAS  Google Scholar 

  51. Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res. 2015;105:140–56.

    Article  CAS  Google Scholar 

  52. Knudsen TB, Kleinstreuer NC. Disruption of embryonic vascular development in predictive toxicology. Birth Defects Res. 2011;93:312–23.

    Article  CAS  Google Scholar 

  53. Kleinstreuer NC, Judson RS, Reif DM, et al. Environmental impact on vascular development predicted by high-throughput screening. Environ Health Perspect. 2011;119:1596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kleinstreuer N, Dix D, Rountree M, Baker N, Sipes N, Reif D, Spencer R, Knudsen T. A computational model predicting disruption of blood vessel development. PLoS Comput Biol. 2013;9:e1002996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tal T, Kilty C, Smith A, LaLone C, Kennedy B, Tennant A, McCollum CW, Bondesson M, Knudsen T, Padilla S, Kleinstreuer N. Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity. Reprod Toxicol. 2017;70:70–81.

    Article  CAS  PubMed  Google Scholar 

  56. Ellis-Hutchings RG, Settivari RS, McCoy AT, Kleinstreuer N, Franzosa J, Knudsen TB, Carney EW. Embryonic vascular disruption adverse outcomes: linking high throughput signaling signatures with functional consequences. Reprod Toxicol. 2017;70:82–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mercurio A, Sharples L, Corbo F, Franchini C, Vacca A, Catalano A, Carocci A, Kamm RD, Pavesi A, Adriani G. Phthalimide derivative shows anti-angiogenic activity in a 3D microfluidic model and no teratogenicity in zebrafish embryos. Front Pharmacol. 2019;10:349.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tonk EC, Pennings JL, Piersma AH. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis. Reprod Toxicol. 2015;55:104–13.

    Article  CAS  PubMed  Google Scholar 

  59. Shenefelt RE. Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage of treatment. Teratology. 1972;5:103–18.

    Article  CAS  PubMed  Google Scholar 

  60. Cohlan SQ. Congenital anomalies in the rat produced by excessive intake of vitamin A during pregnancy. Pediatrics. 1954;13:556–67.

    CAS  PubMed  Google Scholar 

  61. Kochhar DM. Teratogenic activity of retinoic acid. Acta Pathol Microbiol Scand. 1967;70:398–404.

    Article  CAS  PubMed  Google Scholar 

  62. Chambon P. The retinoid signaling pathway: molecular and genetic analyses. Semin Cell Biol. 1994;5:115–25.

    Article  CAS  PubMed  Google Scholar 

  63. Lohnes D, Mark M, Mendelsohn C, et al. Function of the retinoic acid receptors (RARs) during development: I. Craniofacial and skeletal abnormalities in RAR double mutants. Development. 1994;120:2723–48.

    CAS  PubMed  Google Scholar 

  64. Mendelsohn C, Lohnes D, Décimo D, et al. Function of the retinoic acid receptors (RARs) during development: II. Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994;120:2749–71.

    CAS  PubMed  Google Scholar 

  65. Collins MD, Mao GE. Teratology of retinoids. Annu Rev Pharmacol Toxicol. 1999;39:399–430.

    Article  CAS  PubMed  Google Scholar 

  66. Arafa HM, Elmazar MM, Hamada FM, Reichert U, Shroot B, Nau H. Selective agonists of retinoic acid receptors: comparative toxicokinetics and embryonic exposure. Arch Toxicol. 2000;73:547–56.

    Article  CAS  PubMed  Google Scholar 

  67. Capecchi MR. Altering the genome by homologous recombination. Science. 1989;244:1288–92.

    Article  CAS  PubMed  Google Scholar 

  68. Kumar S, Cunningham TJ, Duester G. Nuclear receptor corepressors Ncor1 and Ncor2 (Smrt) are required for retinoic acid-dependent repression of Fgf8 during somitogenesis. Dev Biol. 2016;418:204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marshall H, Nonchev S, Sham MH, et al. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature. 1992;360:737–41.

    Article  CAS  PubMed  Google Scholar 

  70. Piersma AH, Hessel EV, Staal YC. Retinoic acid in developmental toxicology: teratogen, morphogen and biomarker. Reprod Toxicol. 2017;72:53–61.

    Article  CAS  PubMed  Google Scholar 

  71. Jones KL, Smith DW. Recognition of the fetal alcohol syndrome in early infancy. Lancet. 1973;2:999–1001.

    Article  Google Scholar 

  72. Jones KL, Smith DW, Ulleland CN, Streissguth AP. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973;1:1267–71.

    Article  CAS  PubMed  Google Scholar 

  73. Jones KL. The effects of alcohol on fetal development. Birth Defects Res. 2011;93:3–11.

    Article  CAS  Google Scholar 

  74. McQuire C, Paranjothy S, Hurt L, et al. Objective measures of prenatal alcohol exposure: a systematic review. Pediatrics. 2016;138:e20160517.

    Article  PubMed  Google Scholar 

  75. Hoyme HE, Kalberg WO, Elliott AJ, et al. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics. 2016;138:e20154256.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lunde ER, Washburn SE, Golding MC, et al. Alcohol-induced developmental origins of adult-onset diseases. Alcohol Clin Exp Res. 2016;40:1403–14.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Abel EL. Consumption of alcohol during pregnancy: a review of effects on growth and development of offspring. Hum Biol. 1982;54:421–53.

    CAS  PubMed  Google Scholar 

  78. Abel EL. Fetal alcohol syndrome: a cautionary note. Curr Pharm Des. 2006;12:1521–9.

    Article  CAS  PubMed  Google Scholar 

  79. Chernoff GF. The fetal alcohol syndrome in mice: an animal model. Teratology. 1977;15:223–30.

    Article  CAS  PubMed  Google Scholar 

  80. Sulik KK, Johnston MC, Webb MA. Fetal alcohol syndrome: embryogenesis in a mouse model. Science. 1981;214:936–8.

    Article  CAS  PubMed  Google Scholar 

  81. Petrelli B, Weinberg J, Hicks GG. Effects of prenatal alcohol exposure (PAE): insights into FASD using mouse models of PAE. Biochem Cell Biol. 2018;96:131–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Flentke GR, Smith SM. The avian embryo as a model for fetal alcohol spectrum disorder. Biochem Cell Biol. 2018;96:98–106.

    Article  CAS  PubMed  Google Scholar 

  83. Fernandes Y, Buckley DM, Eberhart JK. Diving into the world of alcohol teratogenesis: a review of zebrafish models of fetal alcohol spectrum disorder. Biochem Cell Biol. 2018;96:88–97.

    Article  CAS  PubMed  Google Scholar 

  84. Sulik KK. Genesis of alcohol-induced craniofacial dysmorphism. Exp Biol Med. 2005;230:366–75.

    Article  CAS  Google Scholar 

  85. Smith SM. Alcohol and cell death. In: McQueen CA, Daston GP, Knudsen TB, editors. Comprehensive toxicology, Developmental toxicology, vol. 12. 2nd ed. New York: Elsevier; 2010. p. 223–38.

    Chapter  Google Scholar 

  86. Zeisel SH. What choline metabolism can tell us about the underlying mechanisms of fetal alcohol spectrum disorders. Mol Neurobiol. 2011;44:185–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sulik KK, Johnston MC. Sequence of developmental alterations following acute ethanol exposure in mice: craniofacial features of the fetal alcohol syndrome. Am J Anat. 1983;166:257–69.

    Article  CAS  PubMed  Google Scholar 

  88. Kotch LE, Sulik KK. Experimental fetal alcohol syndrome: proposed pathogenic basis for a variety of associated facial and brain anomalies. Am J Med Genet. 1992;44:168–76.

    Article  CAS  PubMed  Google Scholar 

  89. Kiecker C. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol. 2016;415:314–25.

    Article  CAS  PubMed  Google Scholar 

  90. Belair DG, Wolf CJ, Wood C, Ren H, Grindstaff R, Padgett W, Swank A, MacMillan D, Fisher A, Winnik W, Abbott BD. Engineering human cell spheroids to model embryonic tissue fusion in vitro. PLoS One. 2017;12:e0184155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Belair DG, Wolf CJ, Moorefield SD, Wood C, Becker C, Abbott BD. A three-dimensional organoid culture model to assess the influence of chemicals on morphogenetic fusion. Toxicol Sci. 2018;166:394–408.

    CAS  PubMed  Google Scholar 

  92. Wolf CJ, Belair DG, Becker CM, Das KP, Schmid JE, Abbott BD. Development of an organotypic stem cell model for the study of human embryonic palatal fusion. Birth Defects Res. 2018;110:1322–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dias AS, de Almeida I, Belmonte JM, Glazier JA, Stern CD. Somites without a clock. Science. 2014;343:791–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hester SD, Belmonte JM, Gens JS, Clendenon SG, Glazier JA. A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS Comput Biol. 2011;7:e1002155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Leung MC, Hutson MS, Seifert AW, Spencer RM, Knudsen TB. Computational modeling and simulation of genital tubercle development. Reprod Toxicol. 2016;64:151–61.

    Article  CAS  PubMed  Google Scholar 

  96. Hutson MS, Leung MCK, Baker NC, Spencer RM, Knudsen TB. Computational model of secondary palate fusion and disruption. Chem Res Toxicol. 2017;30:965–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclaimer

The views expressed herein are those of the author and do not necessarily reflect the views or policies of the United States Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rogers, J.M. (2020). Adverse Outcome Pathways for Developmental Toxicity. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics