Skip to main content

Abstract

This chapter provides a general introduction to bisphenols and alkylphenols in toxicity, exposure assessment, biomonitoring, and epidemiological studies. Both bisphenols and alkylphenols are applied intensively to the majority of consumer products and are ubiquitous in environmental matrices. Bisphenol A (BPA), nonylphenol (NP), octylphenol (OP), triclosan (TCS), 3-benzophenone (BP-3), 2,4-dichlorophenol (2,4-DCP), and 2,5-dichlorophenol (2,5-DCP) have been proven as endocrine-disrupting chemicals (EDCs) and exhibited potential health effects on human, especially for vulnerable pregnant women and children. This chapter discusses human exposure source, pathway, metabolism, and possible effects of bisphenols and alkylphenols and provides various epidemiological evidences for human health risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacLusky NJ, Hajszan T, Leranth C. The environmental estrogen bisphenol A inhibits estradiol-induced hippocampal synaptogenesis. Environ Health Perspect. 2005;113(6):675–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miyatake M, et al. Dynamic changes in dopaminergic neurotransmission induced by a low concentration of bisphenol-A in neurones and astrocytes. J Neuroendocrinol. 2006;18(6):434–44.

    Article  CAS  PubMed  Google Scholar 

  3. Peretz J, et al. Bisphenol A and reproductive health: update of experimental and human evidence, 2007-2013. Environ Health Perspect. 2014;122(8):775–86.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mirmira P, Evans-Molina C. Bisphenol A, obesity, and type 2 diabetes mellitus: genuine concern or unnecessary preoccupation? Transl Res. 2014;164(1):13–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller MD, et al. Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect. 2009;117(7):1033–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brede C, et al. Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit Contam. 2003;20(7):684–9.

    Article  CAS  PubMed  Google Scholar 

  7. Vandenberg LN, et al. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139–77.

    Article  CAS  PubMed  Google Scholar 

  8. Jiao FR, Sun XJ, Pang ZT. Production and market analysis of bisphenol A. Chem Ind. 2008;26(9):21.

    Google Scholar 

  9. Cao XL, Corriveau J, Popovic S. Levels of bisphenol A in canned soft drink products in Canadian markets. J Agric Food Chem. 2009;57(4):1307–11.

    Article  CAS  PubMed  Google Scholar 

  10. Cao XL, Corriveau J, Popovic S. Bisphenol A in canned food products from Canadian markets. J Food Prot. 2010;73(6):1085–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bjornsdotter MK, de Boer J, Ballesteros-Gomez A. Bisphenol A and replacements in thermal paper: a review. Chemosphere. 2017;182:691–706.

    Article  CAS  PubMed  Google Scholar 

  12. Matsumoto H, Adachi S, Suzuki Y. Bisphenol A in ambient air particulates responsible for the proliferation of MCF-7 human breast cancer cells and its concentration changes over 6 months. Arch Environ Contam Toxicol. 2005;48(4):459–66.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki T, et al. Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity. Environ Sci Technol. 2004;38(8):2389–96.

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto S, et al. Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan. Arch Environ Contam Toxicol. 2005;48(2):209–16.

    Article  CAS  PubMed  Google Scholar 

  15. Kawahata H, et al. Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan—within coral reefs and adjacent river mouths. Chemosphere. 2004;55(11):1519–27.

    Article  CAS  PubMed  Google Scholar 

  16. Kuch HM, Ballschmiter K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol. 2001;35(15):3201–6.

    Article  CAS  PubMed  Google Scholar 

  17. Corrales J, et al. Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose Response. 2015;13(3):1559325815598308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Geens T, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol. 2012;50(10):3725–40.

    Article  CAS  PubMed  Google Scholar 

  19. Chen WY, Shen YP, Chen SC. Assessing bisphenol A (BPA) exposure risk from long-term dietary intakes in Taiwan. Sci Total Environ. 2016;543(Pt A):140–6.

    Article  CAS  PubMed  Google Scholar 

  20. Volkel W, et al. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol. 2002;15(10):1281–7.

    Article  PubMed  CAS  Google Scholar 

  21. Stahlhut RW, Welshons WV, Swan SH. Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect. 2009;117(5):784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Calafat AM, et al. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008;116(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  23. Maffini MV, et al. Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol. 2006;254-255:179–86.

    Article  CAS  PubMed  Google Scholar 

  24. Koda T, Morita M, Imai H. Retinoic acid inhibits uterotrophic activity of bisphenol A in adult ovariectomized rats. J Nutr Sci Vitaminol (Tokyo). 2007;53(5):432–6.

    Article  CAS  Google Scholar 

  25. Weinhouse C, et al. Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environ Health Perspect. 2014;122(5):485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Macczak A, et al. The in vitro comparative study of the effect of BPA, BPS, BPF and BPAF on human erythrocyte membrane; perturbations in membrane fluidity, alterations in conformational state and damage to proteins, changes in ATP level and Na+/K+ ATPase and AChE activities. Food Chem Toxicol. 2017;110:351–9.

    Article  CAS  PubMed  Google Scholar 

  27. Huc L, et al. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol In Vitro. 2012;26(5):709–17.

    Article  CAS  PubMed  Google Scholar 

  28. Gould JC, et al. Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol. 1998;142(1–2):203–14.

    Article  CAS  PubMed  Google Scholar 

  29. Andersen HR, et al. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect. 1999;107(Suppl 1):89–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ashby J, Tinwell H. Uterotrophic activity of bisphenol A in the immature rat. Environ Health Perspect. 1998;106(11):719–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tyl RW, et al. Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats. Toxicol Sci. 2002;68(1):121–46.

    Article  CAS  PubMed  Google Scholar 

  32. Rubin BS, et al. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001;109(7):675–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Savabieasfahani M, et al. Developmental programming: differential effects of prenatal exposure to bisphenol-A or methoxychlor on reproductive function. Endocrinology. 2006;147(12):5956–66.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JC, et al. Evaluation of developmental toxicity in rats exposed to the environmental estrogen bisphenol A during pregnancy. Life Sci. 2001;69(22):2611–25.

    Article  CAS  PubMed  Google Scholar 

  35. Boucher JG, et al. In vitro effects of bisphenol A beta-D-glucuronide (BPA-G) on adipogenesis in human and murine preadipocytes. Environ Health Perspect. 2015;123(12):1287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Legeay S, Faure S. Is bisphenol A an environmental obesogen? Fundam Clin Pharmacol. 2017;31(6):594–609.

    CAS  PubMed  Google Scholar 

  37. Wu LH, et al. Occurrence of bisphenol S in the environment and implications for human exposure: a short review. Sci Total Environ. 2018;615:87–98.

    Article  CAS  PubMed  Google Scholar 

  38. Rochester JR, Bolden AL. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect. 2015;123(7):643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao C, et al. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ Sci Technol. 2012;46(16):9138–45.

    Article  CAS  PubMed  Google Scholar 

  40. Song S, et al. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China. Environ Pollut. 2014;186:14–9.

    Article  CAS  PubMed  Google Scholar 

  41. Yang Y, et al. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A. 2014;1328:26–34.

    Article  CAS  PubMed  Google Scholar 

  42. Moreman J, et al. Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae. Environ Sci Technol. 2017;51(21):12796–805.

    Article  CAS  PubMed  Google Scholar 

  43. Gramec Skledar D, Peterlin Masic L. Bisphenol A and its analogs: do their metabolites have endocrine activity? Environ Toxicol Pharmacol. 2016;47:182–99.

    Article  CAS  PubMed  Google Scholar 

  44. Siracusa JS, et al. Effects of bisphenol A and its analogs on reproductive health: a mini review. Reprod Toxicol. 2018;79:96–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hanioka N, Naito T, Narimatsu S. Human UDP-glucuronosyltransferase isoforms involved in bisphenol A glucuronidation. Chemosphere. 2008;74(1):33–6.

    Article  CAS  PubMed  Google Scholar 

  46. Suiko M, Sakakibara Y, Liu MC. Sulfation of environmental estrogen-like chemicals by human cytosolic sulfotransferases. Biochem Biophys Res Commun. 2000;267(1):80–4.

    Article  CAS  PubMed  Google Scholar 

  47. Ye X, et al. Quantification of urinary conjugates of bisphenol A, 2,5-dichlorophenol, and 2-hydroxy-4-methoxybenzophenone in humans by online solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2005;383(4):638–44.

    Article  CAS  PubMed  Google Scholar 

  48. Provencher G, et al. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2014;1348:97–104.

    Article  CAS  PubMed  Google Scholar 

  49. Pritchett JJ, Kuester RK, Sipes IG. Metabolism of bisphenol A in primary cultured hepatocytes from mice, rats, and humans. Drug Metab Dispos. 2002;30(11):1180–5.

    Article  CAS  PubMed  Google Scholar 

  50. Zalko D, et al. Biotransformations of bisphenol A in a mammalian model: answers and new questions raised by low-dose metabolic fate studies in pregnant CD1 mice. Environ Health Perspect. 2003;111(3):309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye X, et al. In-vitro oxidation of bisphenol A: is bisphenol A catechol a suitable biomarker for human exposure to bisphenol A? Anal Bioanal Chem. 2011;399(3):1071–9.

    Article  CAS  PubMed  Google Scholar 

  52. Atkinson A, Roy D. In vivo DNA adduct formation by bisphenol A. Environ Mol Mutagen. 1995;26(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  53. Balakrishnan B, et al. Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol. 2010;202(4):393-e1–7.

    Article  CAS  Google Scholar 

  54. Nishikawa M, et al. Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ Health Perspect. 2010;118(9):1196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cappiello M, et al. Uridine 5′-diphosphoglucuronic acid (UDPGLcUA) in the human fetal liver, kidney and placenta. Eur J Drug Metab Pharmacokinet. 2000;25(3–4):161–3.

    Article  CAS  PubMed  Google Scholar 

  56. Kang JH, Kondo F. Determination of bisphenol A in milk and dairy products by high-performance liquid chromatography with fluorescence detection. J Food Prot. 2003;66(8):1439–43.

    Article  CAS  PubMed  Google Scholar 

  57. Kawamura Y, et al. Bisphenol A in domestic and imported canned foods in Japan. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31(2):330–40.

    Article  CAS  PubMed  Google Scholar 

  58. Cao XL, Corriveau J, Popovic S. Migration of bisphenol A from can coatings to liquid infant formula during storage at room temperature. J Food Prot. 2009;72(12):2571–4.

    Article  CAS  PubMed  Google Scholar 

  59. Onn Wong K, Woon Leo L, Leng Seah H. Dietary exposure assessment of infants to bisphenol A from the use of polycarbonate baby milk bottles. Food Addit Contam. 2005;22(3):280–8.

    Article  PubMed  CAS  Google Scholar 

  60. Lorber M, et al. Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ Int. 2015;77:55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bemrah N, et al. Assessment of dietary exposure to bisphenol A in the French population with a special focus on risk characterisation for pregnant French women. Food Chem Toxicol. 2014;72:90–7.

    Article  CAS  PubMed  Google Scholar 

  62. Mercogliano R, Santonicola S. Investigation on bisphenol A levels in human milk and dairy supply chain: a review. Food Chem Toxicol. 2018;114:98–107.

    Article  CAS  PubMed  Google Scholar 

  63. EFSA. Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs: executive summary. EFSA J. 2015;13:3978–4599.

    Article  CAS  Google Scholar 

  64. Lakind JS, Naiman DQ. Bisphenol A (BPA) daily intakes in the United States: estimates from the 2003-2004 NHANES urinary BPA data. J Expo Sci Environ Epidemiol. 2008;18(6):608–15.

    Article  CAS  PubMed  Google Scholar 

  65. Lakind JS, Naiman DQ. Daily intake of bisphenol A and potential sources of exposure: 2005-2006 National Health and Nutrition Examination Survey. J Expo Sci Environ Epidemiol. 2011;21(3):272–9.

    Article  CAS  PubMed  Google Scholar 

  66. Aris A. Estimation of bisphenol A (BPA) concentrations in pregnant women, fetuses and nonpregnant women in eastern townships of Canada. Reprod Toxicol. 2014;45:8–13.

    Article  CAS  PubMed  Google Scholar 

  67. Tan BL, Mohd MA. Analysis of selected pesticides and alkylphenols in human cord blood by gas chromatograph-mass spectrometer. Talanta. 2003;61(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  68. Troisi J, et al. Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S. Placenta. 2014;35(11):947–52.

    Article  CAS  PubMed  Google Scholar 

  69. Huo W, et al. Maternal urinary bisphenol A levels and infant low birth weight: a nested case-control study of the Health Baby Cohort in China. Environ Int. 2015;85:96–103.

    Article  CAS  PubMed  Google Scholar 

  70. Liu C, et al. Associations between maternal phenolic exposure and cord sex hormones in male newborns. Hum Reprod. 2016;31(3):648–56.

    Article  CAS  PubMed  Google Scholar 

  71. Arbuckle TE, et al. Exposure to free and conjugated forms of bisphenol A and triclosan among pregnant women in the MIREC cohort. Environ Health Perspect. 2015;123(4):277–84.

    Article  CAS  PubMed  Google Scholar 

  72. Vandenberg LN, et al. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect. 2010;118(8):1055–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bushnik T, et al. Lead and bisphenol A concentrations in the Canadian population. Health Rep. 2010;21(3):7–18.

    PubMed  Google Scholar 

  74. Zhang Z, et al. Urinary bisphenol A concentrations and their implications for human exposure in several Asian countries. Environ Sci Technol. 2011;45(16):7044–50.

    Article  CAS  PubMed  Google Scholar 

  75. Becker K, et al. GerES IV: phthalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Health. 2009;212(6):685–92.

    Article  CAS  PubMed  Google Scholar 

  76. Ikezuki Y, et al. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002;17(11):2839–41.

    Article  CAS  PubMed  Google Scholar 

  77. Schonfelder G, et al. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002;110(11):A703–7.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lee J, et al. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother-neonate pairs. Sci Total Environ. 2018;626:1494–501.

    Article  CAS  PubMed  Google Scholar 

  79. Calafat AM, et al. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005;113(4):391–5.

    Article  CAS  PubMed  Google Scholar 

  80. Casas L, et al. Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environ Int. 2011;37(5):858–66.

    Article  CAS  PubMed  Google Scholar 

  81. Arbuckle TE, et al. Maternal and infant exposure to environmental phenols as measured in multiple biological matrices. Sci Total Environ. 2015;508:575–84.

    Article  CAS  PubMed  Google Scholar 

  82. Lee YJ, et al. Maternal and fetal exposure to bisphenol A in Korea. Reprod Toxicol. 2008;25(4):413–9.

    Article  CAS  PubMed  Google Scholar 

  83. Shekhar S, et al. Detection of phenolic endocrine disrupting chemicals (EDCs) from maternal blood plasma and amniotic fluid in Indian population. Gen Comp Endocrinol. 2017;241:100–7.

    Article  CAS  PubMed  Google Scholar 

  84. Fernandez MF, et al. Bisphenol A and other phenols in human placenta from children with cryptorchidism or hypospadias. Reprod Toxicol. 2016;59:89–95.

    Article  CAS  PubMed  Google Scholar 

  85. Ye X, et al. Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;831(1–2):110–5.

    Article  CAS  PubMed  Google Scholar 

  86. Yi B, et al. Association between endocrine disrupting phenols in colostrums and maternal and infant health. Int J Endocrinol. 2013;2013:282381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci. 1983;72(10):1103–27.

    Article  CAS  PubMed  Google Scholar 

  88. Karrer C, et al. Physiologically based pharmacokinetic (PBPK) Modeling of the bisphenols BPA, BPS, BPF, and BPAF with new experimental metabolic parameters: comparing the pharmacokinetic behavior of BPA with its substitutes. Environ Health Perspect. 2018;126(7):077002.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shin BS, et al. Physiologically based pharmacokinetics of bisphenol A. J Toxicol Environ Health A. 2004;67(23–24):1971–85.

    Article  CAS  PubMed  Google Scholar 

  90. Hotchkiss AK, et al. Fifteen years after “Wingspread”—environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci. 2008;105(2):235–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McLachlan JA, Simpson E, Martin M. Endocrine disrupters and female reproductive health. Best Pract Res Clin Endocrinol Metab. 2006;20(1):63–75.

    Article  CAS  PubMed  Google Scholar 

  92. Xu LC, et al. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicology. 2005;216(2–3):197–203.

    Article  CAS  PubMed  Google Scholar 

  93. Kabuto H, Amakawa M, Shishibori T. Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life Sci. 2004;74(24):2931–40.

    Article  CAS  PubMed  Google Scholar 

  94. Alizadeh M, et al. Altered allergic cytokine and antibody response in mice treated with bisphenol A. J Med Investig. 2006;53(1–2):70–80.

    Article  Google Scholar 

  95. Sawai C, Anderson K, Walser-Kuntz D. Effect of bisphenol A on murine immune function: modulation of interferon-gamma, IgG2a, and disease symptoms in NZB X NZW F1 mice. Environ Health Perspect. 2003;111(16):1883–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mathieu-Denoncourt J, et al. Plasticizer endocrine disruption: highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol. 2015;219:74–88.

    Article  CAS  PubMed  Google Scholar 

  97. Krishnan AV, et al. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology. 1993;132(6):2279–86.

    Article  CAS  PubMed  Google Scholar 

  98. McCarthy MM. Estradiol and the developing brain. Physiol Rev. 2008;88(1):91–124.

    Article  CAS  PubMed  Google Scholar 

  99. Speroni L, et al. New insights into fetal mammary gland morphogenesis: differential effects of natural and environmental estrogens. Sci Rep. 2017;7:40806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Berger SL, et al. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang Q, et al. Exposure to bisphenol-A affects fear memory and histone acetylation of the hippocampus in adult mice. Horm Behav. 2014;65(2):106–13.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang XF, et al. Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol Biol Rep. 2012;39(9):8621–8.

    Article  CAS  PubMed  Google Scholar 

  103. Yaoi T, et al. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun. 2008;376(3):563–7.

    Article  CAS  PubMed  Google Scholar 

  104. Weng YI, et al. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010;248(2):111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tilghman SL, et al. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells. PLoS One. 2012;7(3):e32754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Anway MD, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.

    Article  CAS  PubMed  Google Scholar 

  107. Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology. 2006;147(6 Suppl):S43–9.

    Article  CAS  PubMed  Google Scholar 

  108. Kundakovic M, Champagne FA. Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun. 2011;25(6):1084–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Calhoun KC, et al. Bisphenol A exposure alters developmental gene expression in the fetal rhesus macaque uterus. PLoS One. 2014;9(1):e85894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Susiarjo M, et al. Bisphenol A exposure disrupts genomic imprinting in the mouse. PLoS Genet. 2013;9(4):e1003401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Villar-Pazos S, et al. Molecular mechanisms involved in the non-monotonic effect of bisphenol-A on ca2+ entry in mouse pancreatic beta-cells. Sci Rep. 2017;7(1):11770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Zhang Y, et al. Non-monotonic dose-response effect of bisphenol A on rare minnow Gobiocypris rarus ovarian development. Chemosphere. 2016;144:304–11.

    Article  CAS  PubMed  Google Scholar 

  113. Miyawaki J, et al. Perinatal and postnatal exposure to bisphenol A increases adipose tissue mass and serum cholesterol level in mice. J Atheroscler Thromb. 2007;14(5):245–52.

    Article  CAS  PubMed  Google Scholar 

  114. Braun JM, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics. 2011;128(5):873–82.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol. 2013;42:132–55.

    Article  CAS  PubMed  Google Scholar 

  116. Philippat C, et al. Prenatal exposure to phenols and growth in boys. Epidemiology. 2014;25(5):625–35.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tang R, et al. Associations of prenatal exposure to phenols with birth outcomes. Environ Pollut. 2013;178:115–20.

    Article  CAS  PubMed  Google Scholar 

  118. Wolff MS, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116(8):1092–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Casas M, et al. Exposure to bisphenol A and phthalates during pregnancy and ultrasound measures of fetal growth in the INMA-Sabadell cohort. Environ Health Perspect. 2016;124(4):521–8.

    Article  CAS  PubMed  Google Scholar 

  120. Ferguson KK, et al. Repeated measures analysis of associations between urinary bisphenol-A concentrations and biomarkers of inflammation and oxidative stress in pregnancy. Reprod Toxicol. 2016;66:93–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lester F, et al. Impact of exposure to phenols during early pregnancy on birth weight in two Canadian cohort studies subject to measurement errors. Environ Int. 2018;120:231–7.

    Article  CAS  PubMed  Google Scholar 

  122. Woods MM, et al. Gestational exposure to endocrine disrupting chemicals in relation to infant birth weight: a Bayesian analysis of the HOME Study. Environ Health. 2017;16(1):115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Minatoya M, et al. Cord blood BPA level and child neurodevelopment and behavioral problems: the Hokkaido Study on Environment and Children’s Health. Sci Total Environ. 2017;607-608:351–6.

    Article  CAS  PubMed  Google Scholar 

  124. Braun JM, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect. 2009;117(12):1945–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Harley KG, et al. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res. 2013;126:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Evans SF, et al. Prenatal bisphenol A exposure and maternally reported behavior in boys and girls. Neurotoxicology. 2014;45:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Perera F, et al. Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environ Health Perspect. 2012;120(8):1190–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Roen EL, et al. Bisphenol A exposure and behavioral problems among inner city children at 7-9 years of age. Environ Res. 2015;142:739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Braun JM, et al. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect. 2014;122(5):513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Miodovnik A, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology. 2011;32(2):261–7.

    Article  CAS  PubMed  Google Scholar 

  131. Minatoya M, et al. Prenatal exposure to bisphenol A and phthalates and behavioral problems in children at preschool age: the Hokkaido Study on Environment and Children’s Health. Environ Health Prev Med. 2018;23(1):43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Yolton K, et al. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicol Teratol. 2011;33(5):558–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rochester JR, Bolden AL, Kwiatkowski CF. Prenatal exposure to bisphenol A and hyperactivity in children: a systematic review and meta-analysis. Environ Int. 2018;114:343–56.

    Article  CAS  PubMed  Google Scholar 

  134. Hong SB, et al. Bisphenol A in relation to behavior and learning of school-age children. J Child Psychol Psychiatry. 2013;54(8):890–9.

    Article  PubMed  Google Scholar 

  135. Stein TP, et al. Bisphenol A exposure in children with autism spectrum disorders. Autism Res. 2015;8(3):272–83.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Perera F, et al. Bisphenol A exposure and symptoms of anxiety and depression among inner city children at 10-12 years of age. Environ Res. 2016;151:195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Casas M, et al. Exposure to bisphenol A during pregnancy and child neuropsychological development in the INMA-Sabadell cohort. Environ Res. 2015;142:671–9.

    Article  CAS  PubMed  Google Scholar 

  138. Zhou A, et al. Prenatal exposure to bisphenol A and risk of allergic diseases in early life. Pediatr Res. 2017;81(6):851–6.

    Article  CAS  PubMed  Google Scholar 

  139. Donohue KM, et al. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J Allergy Clin Immunol. 2013;131(3):736–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Spanier AJ, et al. Prenatal exposure to bisphenol A and child wheeze from birth to 3 years of age. Environ Health Perspect. 2012;120(6):916–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Spanier AJ, et al. Bisphenol A exposure and the development of wheeze and lung function in children through age 5 years. JAMA Pediatr. 2014;168(12):1131–7.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gascon M, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol. 2015;135(2):370–8.

    Article  CAS  PubMed  Google Scholar 

  143. Kim KN, et al. Bisphenol A exposure and asthma development in school-age children: a longitudinal study. PLoS One. 2014;9(10):e111383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Wang IJ, Chen CY, Bornehag CG. Bisphenol A exposure may increase the risk of development of atopic disorders in children. Int J Hyg Environ Health. 2016;219(3):311–6.

    Article  CAS  PubMed  Google Scholar 

  145. Holt PG, Sly PD. Non-atopic intrinsic asthma and the ‘family tree’ of chronic respiratory disease syndromes. Clin Exp Allergy. 2009;39(6):807–11.

    Article  CAS  PubMed  Google Scholar 

  146. Braun JM, et al. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environ Health Perspect. 2012;120(5):739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Casas M, et al. Dietary and sociodemographic determinants of bisphenol A urine concentrations in pregnant women and children. Environ Int. 2013;56:10–8.

    Article  CAS  PubMed  Google Scholar 

  148. Yamamoto J, et al. Quantifying bisphenol A in maternal and cord whole blood using isotope dilution liquid chromatography/tandem mass spectrometry and maternal characteristics associated with bisphenol A. Chemosphere. 2016;164:25–31.

    Article  CAS  PubMed  Google Scholar 

  149. Guenther K, et al. Endocrine disrupting nonylphenols are ubiquitous in food. Environ Sci Technol. 2002;36(8):1676–80.

    Article  CAS  PubMed  Google Scholar 

  150. White R, et al. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 1994;135(1):175–82.

    Article  CAS  PubMed  Google Scholar 

  151. Kovarova J, et al. Alkylphenol ethoxylates and alkylphenols—update information on occurrence, fate and toxicity in aquatic environment. Pol J Vet Sci. 2013;16(4):763–72.

    Article  CAS  PubMed  Google Scholar 

  152. Ying GG, Williams B, Kookana R. Environmental fate of alkylphenols and alkylphenol ethoxylates—a review. Environ Int. 2002;28(3):215–26.

    Article  CAS  PubMed  Google Scholar 

  153. Inoue K, et al. Migration of 4-nonylphenol from polyvinyl chloride food packaging films into food simulants and foods. Food Addit Contam. 2001;18(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  154. Lu J, et al. Anaerobic degradation behavior of nonylphenol polyethoxylates in sludge. Chemosphere. 2008;71(2):345–51.

    Article  CAS  PubMed  Google Scholar 

  155. Soares A, et al. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int. 2008;34(7):1033–49.

    Article  CAS  PubMed  Google Scholar 

  156. Soto AM, et al. p-Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ Health Perspect. 1991;92:167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Thiele B, et al. Contribution to the structural elucidation of 10 isomers of technical p-nonylphenol. Environ Sci Technol. 2004;38(12):3405–11.

    Article  CAS  PubMed  Google Scholar 

  158. Russ AS, et al. Synthesis of branched para-nonylphenol isomers: occurrence and quantification in two commercial mixtures. Chemosphere. 2005;60(11):1624–35.

    Article  CAS  PubMed  Google Scholar 

  159. U.S. Environmental Protection Agency. Nonylphenol (NP) and Nonylphenol Ethoxylates (NPEs) Action Plan. 2010, [RIN 2070-ZA09] [cited 2018 May 22]. https://www.epa.gov/sites/production/files/2015-09/documents/rin2070-za09_np-npes_action_plan_final_2010-08-09.pdf.

  160. Risk and Policy Analysts Limited (RPA). Nonylphenol risk reduction strategy. 1999.

    Google Scholar 

  161. Staples CA, et al. Measuring the biodegradability of nonylphenol ether carboxylates, octylphenol ether carboxylates, and nonylphenol. Chemosphere. 1999;38(9):2029–39.

    Article  CAS  PubMed  Google Scholar 

  162. Chen HW, et al. Occurrence and assessment of treatment efficiency of nonylphenol, octylphenol and bisphenol-A in drinking water in Taiwan. Sci Total Environ. 2013;449:20–8.

    Article  CAS  PubMed  Google Scholar 

  163. Hawrelak M, Bennett E, Metcalfe C. The environmental fate of the primary degradation products of alkylphenol ethoxylate surfactants in recycled paper sludge. Chemosphere. 1999;39(5):745–52.

    Article  CAS  PubMed  Google Scholar 

  164. Ekelund R, et al. Bioaccumulation of 4-nonylphenol in marine animals—a re-evaluation. Environ Pollut. 1990;64(2):107–20.

    Article  CAS  PubMed  Google Scholar 

  165. Snyder SA, et al. Bioconcentration of nonylphenol in fathead minnows (Pimephales promelas). Chemosphere. 2001;44(8):1697–702.

    Article  CAS  PubMed  Google Scholar 

  166. Andersson AM, Skakkebaek NE. Exposure to exogenous estrogens in food: possible impact on human development and health. Eur J Endocrinol. 1999;140(6):477–85.

    Article  CAS  PubMed  Google Scholar 

  167. Ferrara F, et al. Alkylphenols and alkylphenol ethoxylates contamination of crustaceans and fishes from the Adriatic Sea (Italy). Chemosphere. 2005;59(8):1145–50.

    Article  CAS  PubMed  Google Scholar 

  168. Lu YY, et al. Daily intake of 4-nonylphenol in Taiwanese. Environ Int. 2007;33(7):903–10.

    Article  CAS  PubMed  Google Scholar 

  169. Raecker T, et al. Endocrine disrupting nonyl- and octylphenol in infant food in Germany: considerable daily intake of nonylphenol for babies. Chemosphere. 2011;82(11):1533–40.

    Article  CAS  PubMed  Google Scholar 

  170. Fernandes AR, Rose M, Charlton C. 4-Nonylphenol (NP) in food-contact materials: analytical methodology and occurrence. Food Addit Contam. 2008;25(3):364–72.

    Article  CAS  Google Scholar 

  171. Thomson BM, Cressey PJ, Shaw IC. Dietary exposure to xenoestrogens in New Zealand. J Environ Monit. 2003;5(2):229–35.

    Article  CAS  PubMed  Google Scholar 

  172. Acir IH, Guenther K. Endocrine-disrupting metabolites of alkylphenol ethoxylates - a critical review of analytical methods, environmental occurrences, toxicity, and regulation. Sci Total Environ. 2018;635:1530–46.

    Article  CAS  PubMed  Google Scholar 

  173. de Jager C, Bornman MS, Oosthuizen JM. The effect of p-nonylphenol on the fertility potential of male rats after gestational, lactational and direct exposure. Andrologia. 1999;31(2):107–13.

    PubMed  Google Scholar 

  174. Fan Q, Li W, Shen L. Adverse effects of exposure to p-nonylphenol on reproductive system of young male rats. Zhonghua Yu Fang Yi Xue Za Zhi. 2001;35(5):344–6.

    CAS  PubMed  Google Scholar 

  175. Ferguson SA, et al. Maternal and offspring toxicity but few sexually dimorphic behavioral alterations result from nonylphenol exposure. Neurotoxicol Teratol. 2000;22(4):583–91.

    Article  CAS  PubMed  Google Scholar 

  176. Harris CA, et al. Nonylphenol affects gonadotropin levels in the pituitary gland and plasma of female rainbow trout. Environ Sci Technol. 2001;35(14):2909–16.

    Article  CAS  PubMed  Google Scholar 

  177. Holdway DA, Hefferman J, Smith A. Multigeneration assessment of nonylphenol and endosulfan using a model Australian freshwater fish, Melanotaenia fluviatilis. Environ Toxicol. 2008;23(2):253–62.

    Article  CAS  PubMed  Google Scholar 

  178. Jie X, et al. Toxic effect of gestational exposure to nonylphenol on F1 male rats. Birth Defects Res B Dev Reprod Toxicol. 2010;89(5):418–28.

    Article  CAS  PubMed  Google Scholar 

  179. LeBlanc GA, Mu X, Rider CV. Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna. Environ Health Perspect. 2000;108(12):1133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nagao T, et al. Reproductive effects of nonylphenol in rats after gavage administration: a two-generation study. Reprod Toxicol. 2001;15(3):293–315.

    Article  CAS  PubMed  Google Scholar 

  181. Yokota H, et al. Life-cycle toxicity of 4-nonylphenol to medaka (Oryzias latipes). Environ Toxicol Chem. 2001;20(11):2552–60.

    Article  CAS  PubMed  Google Scholar 

  182. Certa H, et al. Toxicokinetics of p-tert-octylphenol in male Wistar rats. Arch Toxicol. 1996;71(1–2):112–22.

    Article  CAS  PubMed  Google Scholar 

  183. Pedersen RT, Hill EM. Identification of novel metabolites of the xenoestrogen 4-tert-octylphenol in primary rat hepatocytes. Chem Biol Interact. 2000;128(3):189–209.

    Article  CAS  PubMed  Google Scholar 

  184. Coldham NG, et al. Biotransformation, tissue distribution, and persistence of 4-nonylphenol residues in juvenile rainbow trout (Oncorhynchus mykiss). Drug Metab Dispos. 1998;26(4):347–54.

    CAS  PubMed  Google Scholar 

  185. Ferreira-Leach AM, Hill EM. Bioconcentration and distribution of 4-tert-octylphenol residues in tissues of the rainbow trout (Oncorhynchus mykiss). Mar Environ Res. 2001;51(1):75–89.

    Article  CAS  PubMed  Google Scholar 

  186. Daidoji T, et al. Glucuronidation and excretion of nonylphenol in perfused rat liver. Drug Metab Dispos. 2003;31(8):993–8.

    Article  CAS  PubMed  Google Scholar 

  187. Knaak JB, Eldridge JM, Sullivan LJ. Excretion of certain polyethylene glycol ether adducts of nonylphenol by the rat. Toxicol Appl Pharmacol. 1966;9(2):331–40.

    Article  CAS  PubMed  Google Scholar 

  188. Doerge DR, et al. Mass spectrometric determination of p-nonylphenol metabolism and disposition following oral administration to Sprague-Dawley rats. Reprod Toxicol. 2002;16(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  189. Muller S, Schmid P, Schlatter C. Pharmacokinetic behavior of 4-nonylphenol in humans. Environ Toxicol Pharmacol. 1998;5(4):257–65.

    Article  CAS  PubMed  Google Scholar 

  190. Venkatesan AK, Halden RU. National inventory of alkylphenol ethoxylate compounds in U.S. sewage sludges and chemical fate in outdoor soil mesocosms. Environ Pollut. 2013;174:189–93.

    Article  CAS  PubMed  Google Scholar 

  191. Lewis SK, Lech JJ. Uptake, disposition, and persistence of nonylphenol from water in rainbow trout (Oncorhynchus mykiss). Xenobiotica. 1996;26(8):813–9.

    Article  CAS  PubMed  Google Scholar 

  192. Colin A, et al. Is drinking water a major route of human exposure to alkylphenol and bisphenol contaminants in France? Arch Environ Contam Toxicol. 2014;66(1):86–99.

    Article  CAS  PubMed  Google Scholar 

  193. Gu Y, et al. Characteristics of the alkylphenol and bisphenol A distributions in marine organisms and implications for human health: a case study of the East China Sea. Sci Total Environ. 2016;539:460–9.

    Article  CAS  PubMed  Google Scholar 

  194. Korsman JC, et al. Modeling bioaccumulation and biomagnification of nonylphenol and its ethoxylates in estuarine-marine food chains. Chemosphere. 2015;138:33–9.

    Article  CAS  PubMed  Google Scholar 

  195. Lee CC, et al. Characteristics of nonylphenol and bisphenol A accumulation by fish and implications for ecological and human health. Sci Total Environ. 2015;502:417–25.

    Article  CAS  PubMed  Google Scholar 

  196. Fernandes AR, Rose M, Charlton C. 4-Nonylphenol (NP) in food-contact materials: analytical methodology and occurrence. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(3):364–72.

    Article  CAS  PubMed  Google Scholar 

  197. Niu Y, et al. Bisphenol A and nonylphenol in foodstuffs: Chinese dietary exposure from the 2007 total diet study and infant health risk from formulas. Food Chem. 2015;167:320–5.

    Article  CAS  PubMed  Google Scholar 

  198. Gyllenhammar I, et al. 4-Nonylphenol and bisphenol A in Swedish food and exposure in Swedish nursing women. Environ Int. 2012;43:21–8.

    Article  CAS  PubMed  Google Scholar 

  199. Cacho JI, et al. Determination of alkylphenols and phthalate esters in vegetables and migration studies from their packages by means of stir bar sorptive extraction coupled to gas chromatography-mass spectrometry. J Chromatogr A. 2012;1241:21–7.

    Article  CAS  PubMed  Google Scholar 

  200. Lu J, et al. Analysis of bisphenol A, nonylphenol, and natural estrogens in vegetables and fruits using gas chromatography-tandem mass spectrometry. J Agric Food Chem. 2013;61(1):84–9.

    Article  PubMed  CAS  Google Scholar 

  201. Ademollo N, et al. Nonylphenol and octylphenol in human breast milk. Environ Int. 2008;34(7):984–7.

    Article  CAS  PubMed  Google Scholar 

  202. Huang YF, et al. Nonylphenol in pregnant women and their matching fetuses: placental transfer and potential risks of infants. Environ Res. 2014;134:143–8.

    Article  CAS  PubMed  Google Scholar 

  203. Sise S, Uguz C. Nonylphenol in human breast milk in relation to sociodemographic variables, diet, obstetrics histories and lifestyle habits in a Turkish population. Iran J Public Health. 2017;46(4):491–9.

    PubMed  PubMed Central  Google Scholar 

  204. Ozaki A, Baba T. Alkylphenol and bisphenol A levels in rubber products. Food Addit Contam. 2003;20(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  205. Loyo-Rosales JE, et al. Migration of nonylphenol from plastic containers to water and a milk surrogate. J Agric Food Chem. 2004;52(7):2016–20.

    Article  CAS  PubMed  Google Scholar 

  206. Kawamura Y, Ogawa Y, Mutsuga M. Migration of nonylphenol and plasticizers from polyvinyl chloride stretch film into food simulants, rapeseed oil, and foods. Food Sci Nutr. 2017;5(3):390–8.

    Article  CAS  PubMed  Google Scholar 

  207. Chen ML, et al. Association between nonylphenol exposure and development of secondary sexual characteristics. Chemosphere. 2009;76(7):927–31.

    Article  CAS  PubMed  Google Scholar 

  208. Chang CH, et al. The association between nonylphenols and sexual hormones levels among pregnant women: a cohort study in Taiwan. PLoS One. 2014;9(8):e104245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Park H, Kim K. Urinary levels of 4-nonylphenol and 4-t-octylphenol in a representative sample of the Korean adult population. Int J Environ Res Public Health. 2017;14(8):932.

    Article  PubMed Central  CAS  Google Scholar 

  210. Li LX, et al. Exposure levels of environmental endocrine disruptors in mother-newborn pairs in China and their placental transfer characteristics. PLoS One. 2013;8(5):e62526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Otaka H, Yasuhara A, Morita M. Determination of bisphenol A and 4-nonylphenol in human milk using alkaline digestion and cleanup by solid-phase extraction. Anal Sci. 2003;19(12):1663–6.

    Article  CAS  PubMed  Google Scholar 

  212. Chen GW, et al. Alkylphenols in human milk and their relations to dietary habits in central Taiwan. Food Chem Toxicol. 2010;48(7):1939–44.

    Article  CAS  PubMed  Google Scholar 

  213. Chen ML, et al. Biomonitoring of alkylphenols exposure for textile and housekeeping workers. Int J Environ Anal Chem. 2005;85(4–5):335–47.

    Article  CAS  Google Scholar 

  214. Kawaguchi M, et al. Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography—mass spectrometry for measurement of phenolic xenoestrogens in human urine samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;820(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  215. Mao L, et al. Determination of environmental estrogens in human urine by high performance liquid chromatography after fluorescent derivatization with p-nitrobenzoyl chloride. Anal Chim Acta. 2004;522:241–6.

    Article  CAS  Google Scholar 

  216. Balakrishnan B, et al. Passage of 4-nonylphenol across the human placenta. Placenta. 2011;32(10):788–92.

    Article  CAS  PubMed  Google Scholar 

  217. Chen ML, et al. Quantification of prenatal exposure and maternal-fetal transfer of nonylphenol. Chemosphere. 2008;73(1 Suppl):S239–45.

    Article  CAS  PubMed  Google Scholar 

  218. Laws SC, et al. Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci. 2000;54(1):154–67.

    Article  CAS  PubMed  Google Scholar 

  219. Routledge EJ, Sumpter JP. Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem. 1997;272(6):3280–8.

    Article  CAS  PubMed  Google Scholar 

  220. Jin S, et al. Enhanced effects by mixtures of three estrogenic compounds at environmentally relevant levels on development of Chinese rare minnow (Gobiocypris rarus). Environ Toxicol Pharmacol. 2012;33(2):277–83.

    Article  CAS  PubMed  Google Scholar 

  221. Ishibashi H, et al. Reproductive effects and bioconcentration of 4-nonylphenol in medaka fish (Oryzias latipes). Chemosphere. 2006;65(6):1019–26.

    Article  CAS  PubMed  Google Scholar 

  222. Koenig S, et al. Biliary PAH and alkylphenol metabolites, biomarker enzyme activities, and gene expression levels in the deep-sea fish Alepocephalus rostratus. Environ Sci Technol. 2013;47(6):2854–61.

    Article  CAS  PubMed  Google Scholar 

  223. Gray MA, Metcalfe CD. Induction of testis-ova in Japanese medaka (Oryzias latipes) exposed to p-nonylphenol. Environ Toxicol Chem. 1997;16:1082–6.

    CAS  Google Scholar 

  224. Sayed Ael D, Mahmoud UM, Mekkawy IA. Reproductive biomarkers to identify endocrine disruption in Clarias gariepinus exposed to 4-nonylphenol. Ecotoxicol Environ Saf. 2012;78:310–9.

    Article  CAS  Google Scholar 

  225. Naderi M, et al. Effects of 4-nonylphenol on balance of steroid and thyroid hormones in sexually immature male yellowfin seabream (Acanthopagrus latus). Environ Toxicol. 2014;29:459.

    Article  CAS  PubMed  Google Scholar 

  226. Wu JJ, et al. Differential effects of nonylphenol on testosterone secretion in rat Leydig cells. Toxicology. 2010;268(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  227. Furuta M, et al. Effects of p-nonylphenol and 4-tert-octylphenol on the anterior pituitary functions in adult ovariectomized rats. Neuroendocrinology. 2006;84(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  228. Bistakova J, et al. Effects of 4-nonylphenol on the steroidogenesis of human adrenocarcinoma cell line (NCI-H295R). J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017;52(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  229. Yu PL, et al. Effects of nonylphenol on the production of progesterone on the rats granulosa cells. J Cell Biochem. 2011;112(9):2627–36.

    Article  CAS  PubMed  Google Scholar 

  230. Gu W, et al. Maternal exposure to nonylphenol during pregnancy and lactation induces microglial cell activation and pro-inflammatory cytokine production in offspring hippocampus. Sci Total Environ. 2018;634:525–33.

    Article  CAS  PubMed  Google Scholar 

  231. Gu W, et al. Mitogen-activated protein kinase signaling is involved in nonylphenol-induced proinflammatory cytokines secretion by BV2 microglia. J Appl Toxicol. 2018;38(7):958–67.

    Article  CAS  PubMed  Google Scholar 

  232. Yu J, et al. Effects of perinatal exposure to nonylphenol on delivery outcomes of pregnant rats and inflammatory hepatic injury in newborn rats. Braz J Med Biol Res. 2016;49(12):e5647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Shaliutina O, et al. The in vitro effect of nonylphenol, propranolol, and diethylstilbestrol on quality parameters and oxidative stress in sterlet (Acipenser ruthenus) spermatozoa. Toxicol In Vitro. 2017;43:9–15.

    Article  CAS  PubMed  Google Scholar 

  234. Cilingir Yeltekin A, Oguz AR. Antioxidant responses and DNA damage in primary hepatocytes of Van fish (Alburnus tarichi, Guldenstadt 1814) exposed to nonylphenol or octylphenol. Drug Chem Toxicol. 2018;41:415–23.

    Article  CAS  PubMed  Google Scholar 

  235. Magnifico MC, et al. Nonylphenol and octylphenol differently affect cell redox balance by modulating the nitric oxide Signaling. Oxidative Med Cell Longev. 2018;2018:1684827.

    Article  CAS  Google Scholar 

  236. Park KH. Alteration of hepatic anti-oxidant systems by 4-nonylphenol, a metabolite of alkylphenol polyethoxylate detergents, in Far Eastern catfish Silurus asotus. Environ Health Toxicol. 2015;30:e2015006.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Jambor T, et al. In vitro effect of 4-nonylphenol on human chorionic gonadotropin (hCG) stimulated hormone secretion, cell viability and reactive oxygen species generation in mice Leydig cells. Environ Pollut. 2017;222:219–25.

    Article  CAS  PubMed  Google Scholar 

  238. Kim H, et al. Comparative toxicological evaluation of nonylphenol and nonylphenol polyethoxylates using human keratinocytes. Drug Chem Toxicol. 2018;41:486–91.

    Article  CAS  PubMed  Google Scholar 

  239. Duan P, et al. 4-Nonylphenol induces disruption of spermatogenesis associated with oxidative stress-related apoptosis by targeting p53-Bcl-2/Bax-Fas/FasL signaling. Environ Toxicol. 2017;32(3):739–53.

    Article  CAS  PubMed  Google Scholar 

  240. Noorimotlagh Z, et al. The possible DNA damage induced by environmental organic compounds: the case of nonylphenol. Ecotoxicol Environ Saf. 2018;158:171–81.

    Article  CAS  PubMed  Google Scholar 

  241. Huang W, et al. Nonylphenol induced apoptosis and autophagy involving the Akt/mTOR pathway in prepubertal Sprague-Dawley male rats in vivo and in vitro. Toxicology. 2016;373:41–53.

    Article  CAS  PubMed  Google Scholar 

  242. Tabassum H, et al. Role of melatonin in mitigating nonylphenol-induced toxicity in frontal cortex and hippocampus of rat brain. Neurochem Int. 2017;104:11–26.

    Article  CAS  PubMed  Google Scholar 

  243. Jie Y, et al. The effects of gestational and lactational exposure to Nonylphenol on c-jun, and c-fos expression and learning and memory in hippocampus of male F1 rat. Iran J Basic Med Sci. 2017;20(4):386–91.

    PubMed  PubMed Central  Google Scholar 

  244. Kazemi S, et al. The correlation between nonylphenol concentration in brain regions and resulting behavioral impairments. Brain Res Bull. 2018;139:190–6.

    Article  CAS  PubMed  Google Scholar 

  245. Kawaguchi S, et al. Oral exposure to low-dose of nonylphenol impairs memory performance in Sprague-Dawley rats. J Toxicol Sci. 2015;40(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  246. Chang LL, Wun WS, Wang PS. In utero and neonate exposure to nonylphenol develops hyperadrenalism and metabolic syndrome later in life. I. First generation rats (F(1)). Toxicology. 2012;301(1–3):40–9.

    Article  CAS  PubMed  Google Scholar 

  247. Zhang HY, et al. Perinatal exposure to 4-nonylphenol affects adipogenesis in first and second generation rats offspring. Toxicol Lett. 2014;225(2):325–32.

    Article  CAS  PubMed  Google Scholar 

  248. Yang J, et al. The adverse effects of perinatal exposure to nonylphenol on carbohydrate metabolism in male offspring rats. Int J Environ Health Res. 2017;27(5):368–76.

    Article  CAS  PubMed  Google Scholar 

  249. Zhang HY, et al. Perinatal exposure to 4-nonylphenol can affect fatty acid synthesis in the livers of F1 and F2 generation rats. Toxicol Res. 2018;7(2):283–92.

    Article  CAS  Google Scholar 

  250. Messerlian C, et al. Preconception and prenatal urinary concentrations of phenols and birth size of singleton infants born to mothers and fathers from the Environment and Reproductive Health (EARTH) study. Environ Int. 2018;114:60–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Etzel TM, et al. Urinary triclosan concentrations during pregnancy and birth outcomes. Environ Res. 2017;156:505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ferguson KK, et al. Environmental phenol associations with ultrasound and delivery measures of fetal growth. Environ Int. 2018;112:243–50.

    Article  CAS  PubMed  Google Scholar 

  253. Ouyang F, et al. Maternal urinary triclosan level, gestational diabetes mellitus and birth weight in Chinese women. Sci Total Environ. 2018;626:451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Guo J, et al. Associations of prenatal exposure to five chlorophenols with adverse birth outcomes. Environ Pollut. 2016;214:478–84.

    Article  CAS  PubMed  Google Scholar 

  255. Aker AM, et al. The associations between prenatal exposure to triclocarban, phenols and parabens with gestational age and birth weight in northern Puerto Rico. Environ Res. 2018;169:41–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  256. Huo W, et al. Urinary level of triclosan in a population of Chinese pregnant women and its association with birth outcomes. Environ Pollut. 2018;233:872–9.

    Article  CAS  PubMed  Google Scholar 

  257. Ding G, et al. Prenatal low-level phenol exposures and birth outcomes in China. Sci Total Environ. 2017;607-608:1400–7.

    Article  CAS  PubMed  Google Scholar 

  258. Geer LA, et al. Association of birth outcomes with fetal exposure to parabens, triclosan and triclocarban in an immigrant population in Brooklyn, New York. J Hazard Mater. 2017;323(Pt A):177–83.

    Article  CAS  PubMed  Google Scholar 

  259. Wang C, et al. Impacts of prenatal triclosan exposure on fetal reproductive hormones and its potential mechanism. Environ Int. 2018;111:279–86.

    Article  CAS  PubMed  Google Scholar 

  260. Berger K, et al. Associations of maternal exposure to triclosan, parabens, and other phenols with prenatal maternal and neonatal thyroid hormone levels. Environ Res. 2018;165:379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Harley KG, et al. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys. Hum Reprod. 2019;34(1):109–17.

    Article  PubMed  Google Scholar 

  262. Buckley JP, et al. Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children’s Environmental Health Study. Environ Int. 2016;91:350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Kalloo G, et al. Early life triclosan exposure and child adiposity at 8 years of age: a prospective cohort study. Environ Health. 2018;17(1):24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Philippat C, et al. Prenatal exposure to nonpersistent endocrine disruptors and behavior in boys at 3 and 5 years. Environ Health Perspect. 2017;125(9):097014.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Nakiwala D, et al. In-utero exposure to phenols and phthalates and the intelligence quotient of boys at 5 years. Environ Health. 2018;17(1):17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Braun JM, et al. Prenatal phthalate, triclosan, and bisphenol A exposures and child visual-spatial abilities. Neurotoxicology. 2017;58:75–83.

    Article  CAS  PubMed  Google Scholar 

  267. Etzel T, et al. Prenatal urinary triclosan concentrations and child neurobehavior. Environ Int. 2018;114:152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Buckley JP, et al. Associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic diseases among children aged 6 and 7years. Environ Int. 2018;115:79–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Vernet C, et al. In utero exposure to select phenols and phthalates and respiratory health in five-year-old boys: a prospective study. Environ Health Perspect. 2017;125(9):097006.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Lee-Sarwar K, et al. Prenatal and early-life triclosan and paraben exposure and allergic outcomes. J Allergy Clin Immunol. 2018;142(1):269–278.e15.

    Article  CAS  PubMed  Google Scholar 

  271. Ashley-Martin J, et al. Prenatal triclosan exposure and cord blood immune system biomarkers. Int J Hyg Environ Health. 2016;219(4–5):454–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Lien Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, ML., Chang, CH., Minatoya, M. (2020). Bisphenols and Alkylphenols. In: Kishi, R., Grandjean, P. (eds) Health Impacts of Developmental Exposure to Environmental Chemicals. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-0520-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0520-1_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0519-5

  • Online ISBN: 978-981-15-0520-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics