Skip to main content

Railway Wheel Out-of-Roundness and Its Effects on Vehicle–Track Dynamics: A Review

  • Chapter
  • First Online:

Abstract

Wheel out-of-roundness (OOR), as the excitation of railway vehicle-track system, can cause intense vibration and has the potential to impose damage to both track and vehicle components. It may further increase the likelihood of derailment and deteriorate ride comfort. It is therefore necessary to study the effects of wheel OOR on the dynamic performance of these components and structures in operation. This chapter reviews the efforts on numerical simulation to analyse the properties of wheel roughness-induced vibration. The overview of wheel OOR is stated first including the initiation mechanism and consequences of wheel local defects and polygonisation. Several important issues in vehicle–track dynamic simulation for effect analysis of wheel OOR are then reviewed, including wheel defect simulation, wheel–rail contact model, the time-domain and frequency-domain approaches and different vehicle and track models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Johansson, A., Nielsen, J.C.: Out-of-round railway wheels–wheel-rail contact forces and track response derived from field tests and numerical simulations. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 217(2), 135–146 (2003)

    Google Scholar 

  2. Wu, Y., Du, X., Zhang, H.J., Wen, Z.F., Jin, X.S.: Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train. J. Zhejiang Univ. Sci. A 18(8), 579–592 (2017)

    Google Scholar 

  3. Nielsen, J.: Out-of-round railway wheels. In: Lews, R., Olofsson, U. (eds.) Wheel-Rail Interface Handbook. Woodhead Publishing, UK, pp. 245–279 (2009)

    Google Scholar 

  4. Handa, K., Kimura, Y., Mishima, Y.: Surface cracks initiation on carbon steel railway wheels under concurrent load of continuous rolling contact and cyclic frictional heat. Wear 268(1), 50–58 (2010)

    Google Scholar 

  5. Dukkipati, R.V., Dong, R.: Impact loads due to wheel flats and shells. Veh. Syst. Dyn. 31(1), 1–22 (1999)

    Google Scholar 

  6. Ahlström, J., Karlsson, B.: Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats. Wear 232(1), 1–14 (1999)

    Google Scholar 

  7. Jergéus, J.: Martensite formation and residual stresses around railway wheel flats. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 212(1), 69–79 (1998)

    Google Scholar 

  8. Esmaeili, A., Walia, M.S., Handa, K., Ikeuchi, K., Ekh, M., Vernersson, T., Ahlström, J.: A methodology to predict thermomechanical cracking of railway wheel treads: From experiments to numerical predictions. Int. J. Fatigue 105, 71–85 (2017)

    Google Scholar 

  9. Kwon, S.J., Seo, J.W., Jun, H.K., Lee, D.H.: Damage evaluation regarding to contact zones of high-speed train wheel subjected to thermal fatigue. Eng. Fail. Anal. 55, 327–342 (2015)

    Google Scholar 

  10. Vernersson, T.: Thermally induced roughness of tread braked railway wheels: part 2: modelling and field measurements. Wear 236(1), 106–116 (1999)

    Google Scholar 

  11. Wallentin, M., Bjarnehed, H.L., Lundén, R.: Cracks around railway wheel flats exposed to rolling contact loads and residual stresses. Wear 258(7), 1319–1329 (2005)

    Google Scholar 

  12. Handa, K., Morimoto, F.: Influence of wheel/rail tangential traction force on thermal cracking of railway wheels. Wear 289, 112–118 (2012)

    Google Scholar 

  13. Zwierczyk, P.T., Váradi, K.: Thermal stress analysis of a railway wheel in sliding-rolling motion. J. Tribol. 136(3), 031401 (2014)

    Google Scholar 

  14. Haidari, A., Hosseini-Tehrani, P.: Fatigue analysis of railway wheels under combined thermal and mechanical loads. J. Therm. Stress 37(1), 34–50 (2014)

    Google Scholar 

  15. Caprioli, S., Vernersson, T., Handa, K., Ikeuchi, K.: Thermal cracking of railway wheels: towards experimental validation. Tribol. Int. 94, 409–420 (2016)

    Google Scholar 

  16. Vernersson, T.: Thermally induced roughness of tread-braked railway wheels: part 1: brake rig experiments. Wear 236(1), 96–105 (1999)

    Google Scholar 

  17. Petersson, M.: Noise-related roughness of railway wheel treads-full-scale testing of brake blocks. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 214(2), 63–77 (2000)

    Google Scholar 

  18. Vakkalagadda, M.R.K., Srivastava, D.K., Mishra, A., Racherla, V.: Performance analyses of brake blocks used by Indian Railways. Wear 328, 64–76 (2015)

    Google Scholar 

  19. Braghin, F., Lewis, R., Dwyer-Joyce, R.S., Bruni, S.: A mathematical model to predict railway wheel profile evolution due to wear. Wear 261(11), 1253–1264 (2006)

    Google Scholar 

  20. Pearce, T.G., Sherratt, N.D.: Prediction of wheel profile wear. Wear 144(1–2), 343–351 (1991)

    Google Scholar 

  21. Bevan, A., Molyneux-Berry, P., Eickhoff, B., Burstow, M.: Development and validation of a wheel wear and rolling contact fatigue damage model. Wear 307(1), 100–111 (2013)

    Google Scholar 

  22. Ekberg, A., Kabo, E., Andersson, H.: An engineering model for prediction of rolling contact fatigue of railway wheels. Fatigue Fract. Eng. Mater. Struct. 25(10), 899–909 (2002)

    Google Scholar 

  23. Johansson, A., Andersson, C.: Out-of-round railway wheels—a study of wheel polygonalization through simulation of three-dimensional wheel–rail interaction and wear. Veh. Syst. Dyn. 43(8), 539–559 (2005)

    Google Scholar 

  24. Johansson, A., Nielsen, J.C.: Rail corrugation growth—influence of powered wheelsets with wheel tread irregularities. Wear 262(11), 1296–1307 (2007)

    Google Scholar 

  25. Li, X., Jin, X., Wen, Z., Cui, D., Zhang, W.: A new integrated model to predict wheel profile evolution due to wear. Wear 271(1), 227–237 (2011)

    Google Scholar 

  26. Tao, G.Q., Du, X., Zhang, H.J., Wen, Z.F., Jin, X.S., Cui, D.B.: Development and validation of a model for predicting wheel wear in high-speed trains. J. Zhejiang Univ. Sci. A 18(8), 603–616 (2017)

    Google Scholar 

  27. Luo, R., Shi, H., Teng, W., Song, C.: Prediction of wheel profile wear and vehicle dynamics evolution considering stochastic parameters for high-speed train. Wear 392, 126–138 (2017)

    Google Scholar 

  28. Liu, Y., Stratman, B., Mahadevan, S.: Fatigue crack initiation life prediction of railroad wheels. Int. J. Fatigue 28(7), 747–756 (2006)

    Google Scholar 

  29. Liu, Y., Liu, L., Stratman, B., Mahadevan, S.: Multiaxial fatigue reliability analysis of railroad wheels. Reliab. Eng. Syst. Saf. 93(3), 456–467 (2008)

    Google Scholar 

  30. Taraf, M., Zahaf, E.H., Oussouaddi, O., Zeghloul, A.: Numerical analysis for predicting the rolling contact fatigue crack initiation in a railway wheel steel. Tribol. Int. 43(3), 585–593 (2010)

    Google Scholar 

  31. Sandström, J.: Subsurface rolling contact fatigue damage of railway wheels-a probabilistic analysis. Int. J. Fatigue 37, 146–152 (2012)

    Google Scholar 

  32. Jergeus, J., Odenmarck, C., Lunden, R., Sotkovszki, P., Karlsson, B., Gullers, P.: Full-scale railway wheel flat experiments. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 213(1), 1–13 (1999)

    Google Scholar 

  33. Kouroussis, G., Connolly, D.P., Verlinden, O.: Railway-induced ground vibrations—a review of vehicle effects. Int. J. Rail Transp. 2(2), 69–110 (2014)

    Google Scholar 

  34. Jin, X.S.: Key problems faced in high-speed train operation. J. Zhejiang Univ. Sci. A 15(12), 936–945 (2014)

    Google Scholar 

  35. Jin, X., Xiao, X., Wen, Z., Guo, J., Zhu, M.: An investigation into the effect of train curving on wear and contact stresses of wheel and rail. Tribol. Int. 42(3), 475–490 (2009)

    Google Scholar 

  36. Ekberg, A., Kabo, E., Nielsen, J.C., Lundén, R.: Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation. Int. J. Solids Struct. 44(24), 7975–7987 (2007)

    MATH  Google Scholar 

  37. Ekberg, A.: Rolling contact fatigue of railway wheels. Chalmers University of Technology, Goteborg, Sweden (2000)

    Google Scholar 

  38. Ekberg, A., Marais, J.: Effects of imperfections on fatigue initiation in railway wheels. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 214(1), 45–54 (2000)

    Google Scholar 

  39. Ekberg, A., Sotkovszki, P.: Anisotropy and rolling contact fatigue of railway wheels. Int. J. Fatigue 23(1), 29–43 (2001)

    Google Scholar 

  40. Jin, X., Wu, L., Fang, J., Zhong, S., Ling, L.: An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system. Veh. Syst. Dyn. 50(12), 1817–1834 (2012)

    ADS  Google Scholar 

  41. Kaper, H.P.: Wheel corrugation on Netherlands railways (NS): origin and effects of “polygonization” in particular. J. Sound Vib. 120(2), 267–274 (1988)

    ADS  MathSciNet  Google Scholar 

  42. Meinke, P., Meinke, S.: Polygonalization of wheel treads caused by static and dynamic imbalances. J. Sound Vib. 227(5), 979–986 (1999)

    ADS  Google Scholar 

  43. Ma, W., Luo, S., Song, R.: Abnormal vertical dynamic performance of subway vehicles. Chin. J. Mech. Eng. (English Edition) 23(2), 174–179 (2010)

    Google Scholar 

  44. Ma, W., Song, R., Luo, S.: Study on the mechanism of the formation of polygon-shaped wheels on subway vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 230(1), 129–137 (2016)

    Google Scholar 

  45. Meywerk, M.: Polygonalization of railway wheels. Arch. Appl. Mech. 69(2), 105–120 (1999)

    ADS  MATH  Google Scholar 

  46. Cui, D.B., Lin, L., Song, C.Y.: Out of round high-speed wheel and its influence on wheel/rail behavior. J. Mech. Eng. 49, 8–16 (2013)

    Google Scholar 

  47. Pan, R., Zhao, X., Liu, P., Ren, R.: Micro-mechanism of polygonization wear on railroad wheels. Wear 392, 213–220 (2017)

    Google Scholar 

  48. Brommundt, E.: A simple mechanism for the polygonalization of railway wheels by wear. Mech. Res. Commun. 24(4), 435–442 (1997)

    MATH  Google Scholar 

  49. Enblom, R.: Deterioration mechanisms in the wheel–rail interface with focus on wear prediction: a literature review. Veh. Syst. Dyn. 47(6), 661–700 (2009)

    Google Scholar 

  50. Zhang, J., Han, G.X., Xiao, X.B., Wang, R.Q., Zhao, Y., Jin, X.S.: Influence of wheel polygonal wear on interior noise of high-speed trains. J. Zhejiang Univ. Sci. A 15(12), 1002–1018 (2014)

    Google Scholar 

  51. Zhang, J., Xiao, X.B., Han, G., Deng, Y., Jin, X.S.: Study on abnormal interior noise of high-speed trains. In: Noise and Vibration Mitigation for Rail Transportation Systems, pp. 691–698. Springer, Berlin, Heidelberg (2015)

    Google Scholar 

  52. Barke, D.W., Chiu, W.K.: A review of the effects of out-of-round wheels on track and vehicle components. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 219(3), 151–175 (2005)

    Google Scholar 

  53. Wu, X., Chi, M.: Study on stress states of a wheelset axle due to a defective wheel. J. Mech. Sci. Technol. 30(11), 4845–4857 (2016)

    Google Scholar 

  54. Ikeuchi, K., Handa, K., Lundén, R., Vernersson, T.: Wheel tread profile evolution for combined block braking and wheel-rail contact: Results from dynamometer experiments. Wear 366, 310–315 (2016)

    Google Scholar 

  55. ISO 2631-2: Mechanical vibration and shock—evaluation of human exposure to whole-body vibration—part 2: vibration in buildings (1 Hz to 80 Hz). International Organization for Standardization; Geneva, Switzerland (2003)

    Google Scholar 

  56. Nelain, B., Huber, P., Mirza, A., Oppel, M., Müller, R.: Field test measurement report—the influence from vehicle design on the generation of ground-borne vibration. RIVAS (SCP0-GA-2010-265754), Deliverable 5.6, October 2013

    Google Scholar 

  57. Wu, T.X., Thompson, D.J.: A hybrid model for the noise generation due to railway wheel flats. J. Sound Vib. 251(1), 115–139 (2002)

    ADS  Google Scholar 

  58. Verheijen, E.: A survey on roughness measurements. J. Sound Vib. 293(3), 784–794 (2006)

    ADS  Google Scholar 

  59. Dings, P.C., Dittrich, M.G.: Roughness on Dutch railway wheels and rails. J. Sound Vib. 193(1), 103–112 (1996)

    ADS  Google Scholar 

  60. Li, L., Xiao, X.B., Jin, X.S.: Interaction of subway LIM vehicle with ballasted track in polygonal wheel wear development. Acta. Mech. Sin. 27(2), 297–307 (2011)

    ADS  Google Scholar 

  61. Morys, B.: Enlargement of out-of-round wheel profiles on high speed trains. J. Sound Vib. 227(5), 965–978 (1999)

    ADS  Google Scholar 

  62. Baeza, L., Fayos, J., Roda, A., Insa, R.: High frequency railway vehicle-track dynamics through flexible rotating wheelsets. Veh. Syst. Dyn. 46(7), 647–659 (2008)

    Google Scholar 

  63. Pieringer, A., Kropp, W., Nielsen, J.C.: The influence of contact modelling on simulated wheel/rail interaction due to wheel flats. Wear 314(1), 273–281 (2014)

    Google Scholar 

  64. Alonso, A., Giménez, J.G.: Wheel–rail contact: roughness, heat generation and conforming contact influence. Tribol. Int. 41(8), 755–768 (2008)

    Google Scholar 

  65. Alonso, A., Giménez, J.G.: A new method for the solution of the normal contact problem in the dynamic simulation of railway vehicles. Veh. Syst. Dyn. 43(2), 149–160 (2005)

    Google Scholar 

  66. Nielsen, J.C., Oscarsson, J.: Simulation of dynamic train–track interaction with state-dependent track properties. J. Sound Vib. 275(3), 515–532 (2004)

    ADS  Google Scholar 

  67. Enblom, R., Berg, M.: Impact of non-elliptic contact modelling in wheel wear simulation. Wear 265(9), 1532–1541 (2008)

    Google Scholar 

  68. Baeza, L., Roda, A., Carballeira, J., Giner, E.: Railway train-track dynamics for wheelflats with improved contact models. Nonlinear Dyn. 45(3–4), 385–397 (2006)

    MATH  Google Scholar 

  69. Alonso, A., Giménez, J.G.: Some new contributions to the resolution of the normal wheel–rail contact problem. Veh. Syst. Dyn. 44(sup1), 230–239 (2006)

    Google Scholar 

  70. Piotrowski, J., Kik, W.: A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Veh. Syst. Dyn. 46(1–2), 27–48 (2008)

    Google Scholar 

  71. Quost, X., Sebes, M., Eddhahak, A., Ayasse, J.B., Chollet, H., Gautier, P.E., Thouverez, F.: Assessment of a semi-Hertzian method for determination of wheel–rail contact patch. Veh. Syst. Dyn. 44(10), 789–814 (2006)

    Google Scholar 

  72. Li, S., Li, Z., Núñez, A., Dollevoet, R.: New insights into the short pitch corrugation enigma based on 3D-FE coupled dynamic vehicle-track modeling of frictional rolling contact. Appl. Sci. 7(8), 807 (2017)

    Google Scholar 

  73. Grassie, S.L.: Models of railway track and vehicle/track interaction at high frequencies: results of benchmark test. Veh. Syst. Dyn. 25(sup1), 243–262 (1996)

    Google Scholar 

  74. Evans, J., Berg, M.: Challenges in simulation of rail vehicle dynamics. Veh. Syst. Dyn. 47(8), 1023–1048 (2009)

    Google Scholar 

  75. Baeza, L., Vila, P., Xie, G., Iwnicki, S.D.: Prediction of rail corrugation using a rotating flexible wheelset coupled with a flexible track model and a non-Hertzian/non-steady contact model. J. Sound Vib. 330(18), 4493–4507 (2011)

    ADS  Google Scholar 

  76. Ripke, B., Knothe, K.: Simulation of high frequency vehicle-track interactions. Veh. Syst. Dyn. 24(sup1), 72–85 (1995)

    Google Scholar 

  77. Wu, T.X., Thompson, D.J.: Theoretical investigation of wheel/rail non-linear interaction due to roughness excitation. Veh. Syst. Dyn. 34(4), 261–282 (2000)

    Google Scholar 

  78. Zhao, X., Li, Z., Liu, J.: Wheel–rail impact and the dynamic forces at discrete supports of rails in the presence of singular rail surface defects. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 226(2), 124–139 (2012)

    Google Scholar 

  79. Chaar, N., Berg, M.: Simulation of vehicle–track interaction with flexible wheelsets, moving track models and field tests. Veh. Syst. Dyn. 44(sup1), 921–931 (2006)

    Google Scholar 

  80. Zhai, W.M., Wang, Q.C., Lu, Z.W., Wu, X.S.: Dynamic effects of vehicles on tracks in the case of raising train speeds. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 215(2), 125–135 (2001)

    Google Scholar 

  81. Nielsen, J.C., Ekberg, A., Lundén, R.: Influence of short-pitch wheel/rail corrugation on rolling contact fatigue of railway wheels. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 219(3), 177–187 (2005)

    Google Scholar 

  82. Andersson, C., Abrahamsson, T.: Simulation of interaction between a train in general motion and a track. Veh. Syst. Dyn. 38(6), 433–455 (2002)

    Google Scholar 

  83. Steenbergen, M.J.: The role of the contact geometry in wheel–rail impact due to wheel flats. Veh. Syst. Dyn. 45(12), 1097–1116 (2007)

    Google Scholar 

  84. Steenbergen, M.J.: The role of the contact geometry in wheel–rail impact due to wheel flats: part II. Veh. Syst. Dyn. 46(8), 713–737 (2008)

    Google Scholar 

  85. Jing, L., Han, L.: Further study on the wheel–rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress. Veh. Syst. Dyn. 55(12), 1946–1972 (2017)

    ADS  Google Scholar 

  86. Wu, T.X., Thompson, D.J.: The effects of track non-linearity on wheel/rail impact. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 218(1), 1–15 (2004)

    Google Scholar 

  87. Bian, J., Gu, Y., Murray, M.H.: A dynamic wheel–rail impact analysis of railway track under wheel flat by finite element analysis. Veh. Syst. Dyn. 51(6), 784–797 (2013)

    ADS  Google Scholar 

  88. Han, L., Jing, L., Liu, K.: A dynamic simulation of the wheel–rail impact caused by a wheel flat using a 3-D rolling contact model. J. Mod. Transp. 25(2), 124–131 (2017)

    Google Scholar 

  89. Zhai, W.M., Sun, X.: A detailed model for investigating vertical interaction between railway vehicle and track. Veh. Syst. Dyn. 23(sup1), 603–615 (1994)

    Google Scholar 

  90. Wu, X., Chi, M., Wu, P.: Influence of polygonal wear of railway wheels on the wheel set axle stress. Veh. Syst. Dyn. 53(11), 1535–1554 (2015)

    ADS  Google Scholar 

  91. Pieringer, A., Kropp, W.: A fast time-domain model for wheel/rail interaction demonstrated for the case of impact forces caused by wheel flats. In: 7th European Conference on Noise Control 2008, EURONOISE 2008, Paris; France; 29 June 2008 through 4 July 2008

    Google Scholar 

  92. Uzzal, R.U.A., Ahmed, A.K.W., Rakheja, S.: Analysis of pitch plane railway vehicle—track interactions due to single and multiple wheel flats. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 223(4), 375–390 (2009)

    Google Scholar 

  93. Liu, X., Zhai, W.: Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains. Wear 314(1), 282–290 (2014)

    Google Scholar 

  94. Uzzal, R.U.A., Ahmed, A.K.W., Bhat, R.B.: Modelling, validation and analysis of a three-dimensional railway vehicle–track system model with linear and nonlinear track properties in the presence of wheel flats. Veh. Syst. Dyn. 51(11), 1695–1721 (2013)

    ADS  Google Scholar 

  95. Nielsen, J.C., Lombaert, G., François, S.: A hybrid model for prediction of ground-borne vibration due to discrete wheel/rail irregularities. J. Sound Vib. 345, 103–120 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Zhou Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, XZ. (2019). Railway Wheel Out-of-Roundness and Its Effects on Vehicle–Track Dynamics: A Review. In: Zhou, Y., Wahab, M., Maia, N., Liu, L., Figueiredo, E. (eds) Data Mining in Structural Dynamic Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-15-0501-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0501-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0500-3

  • Online ISBN: 978-981-15-0501-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics