Skip to main content

Fundamentals of Absorption Heating Technologies

  • Chapter
  • First Online:
Absorption Heating Technologies
  • 631 Accesses

Abstract

To improve the primary energy efficiencies of conventional heating systems, a cascade energy utilization principle is summarized for high-efficiency low-temperature heating systems. Absorption cycles are perfect examples of the cascade energy principle and are great options for energy-saving and emission reduction, owing to the exceptional advantages in the utilization of renewable energy and waste heat. Depending on the change in heat quantity or quality, the absorption heating technologies are classified into four main categories: heat increasing, heat shifting, temperature upgrading, and temperature adapting. The principles of various absorption heating technologies are introduced, the general characteristics of absorption working fluids are presented, the properties of the working fluids suitable for different applications are explained in detail, and the modeling methods of the absorption heating cycles are introduced, including the ideal equivalent model and the actual thermodynamic model. This chapter presents the fundamental aspects necessary to facilitate the understanding, design, analysis, and optimization of absorption heating technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammar, Y., Li, H., Walsh, C., Thornley, P., Sharifi, V., & Roskilly, A. P. (2012). Desalination using low grade heat in the process industry: Challenges and perspectives. Applied Thermal Engineering, 48, 446–457.

    Article  Google Scholar 

  • ASHRAE. (2009). Handbook-fundamentals. USA: American Society of Heating, Refrigerating and Air-conditioning Engineers.

    Google Scholar 

  • Balamuru, V. G., Ibrahim, O. M., & Barnett, S. M. (2000). Simulation of ternary ammonia–water–salt absorption refrigeration cycles. International Journal of Refrigeration, 23(1), 31–42.

    Article  Google Scholar 

  • Chan, C. Y., & Haselden, G. G. (1981). Computer-based refrigerant thermodynamic properties. Part 1: Basic equations. International Journal of Refrigeration, 4(1), 7–12.

    Google Scholar 

  • Cleland, A. C. (1986). Computer subroutines for rapid evaluation of refrigerant thermodynamic properties. International Journal of Refrigeration, 9(6), 346–351.

    Article  Google Scholar 

  • Davis, R. O. E., Olmstead, L. B., & Lundstrum, F. O. (1921). Vapor pressure of lithium nitrate: Ammonia system. Journal of the American Chemical Society, 43(7), 1575–1580.

    Article  Google Scholar 

  • Ferreira, C. I. (1984). Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions. Solar Energy, 32(2), 231–236.

    Article  Google Scholar 

  • Florides, G. A., Kalogirou, S. A., Tassou, S. A., & Wrobel, L. C. (2003). Design and construction of a LiBr–water absorption machine. Energy Conversion and Management, 44(15), 2483–2508.

    Article  Google Scholar 

  • Gilani, S. I. U. H., & Ahmed, M. S. M. S. (2015). Solution crystallization detection for double-effect LiBr-H2O steam absorption chiller. Energy Procedia, 75, 1522–1528.

    Article  Google Scholar 

  • Gomri, R. (2010). Thermal seawater desalination: Possibilities of using single effect and double effect absorption heat transformer systems. Desalination, 253(1–3), 112–118.

    Article  Google Scholar 

  • Hui, L., N’Tsoukpoe, K. E., & Lingai, L. (2011). Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples. Energy Conversion and Management, 52(6), 2427–2436.

    Article  Google Scholar 

  • Jawahar, C. P., & Saravanan, R. (2010). Generator absorber heat exchange based absorption cycle—A review. Renewable and Sustainable Energy Reviews, 14(8), 2372–2382.

    Article  Google Scholar 

  • Jensen, J. K., Ommen, T., Markussen, W. B., Reinholdt, L., & Elmegaard, B. (2015). Technical and economic working domains of industrial heat pumps: Part 2–Ammonia-water hybrid absorption-compression heat pumps. International Journal of Refrigeration, 55, 183–200.

    Article  Google Scholar 

  • Kang, Y. T., Kunugi, Y., & Kashiwagi, T. (2000). Review of advanced absorption cycles: Performance improvement and temperature lift enhancement. International Journal of Refrigeration, 23(5), 388–401.

    Article  Google Scholar 

  • Klein, S. A. (2017). Engineering equation solver. Madison, WI: F-Chart Software.

    Google Scholar 

  • Lee, R. J., DiGuilio, R. M., Jeter, S. M., & Teja, A. S. (1990). Properties of lithium bromide-water solutions at high temperatures and concentrations-II: Density and viscosity. ASHRAE Transaction, 96(1), 709–728.

    Google Scholar 

  • Li, X., & Wu, W. (2015). Research progress of high-efficiency, low-temperature hot water systems. Chinese Science Bulletin, 60(18), 1661–1677.

    Article  Google Scholar 

  • Li, X., Wu, W., & Yu, C. W. (2015). Energy demand for hot water supply for indoor environments: Problems and perspectives.

    Google Scholar 

  • Li, X., Wu, W., Zhang, X., Shi, W., & Wang, B. (2012). Energy saving potential of low temperature hot water system based on air source absorption heat pump. Applied Thermal Engineering, 48, 317–324.

    Article  Google Scholar 

  • Li, Y., Fu, L., Zhang, S., & Zhao, X. (2011a). A new type of district heating system based on distributed absorption heat pumps. Energy, 36(7), 4570–4576.

    Article  Google Scholar 

  • Li, Y., Fu, L., Zhang, S., Jiang, Y., & Zhao, X. L. (2011b). A new type of district heating method with co-generation based on absorption heat exchange (co-ah cycle). Energy Conversion and Management, 52(2), 1200–1207.

    Article  Google Scholar 

  • Lin, P., Wang, R. Z., Xia, Z. Z., & Ma, Q. (2011). Ammonia–water absorption cycle: A prospective way to transport low-grade heat energy over long distance. International Journal of Low-Carbon Technologies, 6(2), 125–133.

    Article  Google Scholar 

  • Ma, Q., Luo, L., Wang, R. Z., & Sauce, G. (2009). A review on transportation of heat energy over long distance: Exploratory development. Renewable and Sustainable Energy Reviews, 13(6–7), 1532–1540.

    Article  Google Scholar 

  • Myhren, J. A., & Holmberg, S. (2008). Flow patterns and thermal comfort in a room with panel, floor and wall heating. Energy and Buildings, 40(4), 524–536.

    Article  Google Scholar 

  • Patek, J., & Klomfar, J. (1995). Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system. International Journal of Refrigeration, 18(4), 228–234.

    Article  Google Scholar 

  • Sathyabhama, A. (2012). Effect of salt on boiling heat transfer of ammonia-water mixture. Heat and Mass Transfer, 48(3), 497–503.

    Article  Google Scholar 

  • Schulz, S. C. G. (1971). Equations of state for the system ammonia-water for use with computers. Washington: In IIR, Meeting Comission II.

    Google Scholar 

  • Sun, D. W. (1998). Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration systems. Energy Conversion and Management, 39(5–6), 357–368.

    Article  Google Scholar 

  • Sun, J., Fu, L., & Zhang, S. (2012). A review of working fluids of absorption cycles. Renewable and Sustainable Energy Reviews, 16(4), 1899–1906.

    Article  Google Scholar 

  • Takada, A. (1987) Absorption chillers (H. B. Geng, et al., Trans.). Machinery Industry Press (in Chinese).

    Google Scholar 

  • Tsinghua University Building Energy Saving Research Center (TUBESRC). (2011). 2011 Annual report on China building energy efficiency. Beijing: China Architecture and Building Press. (in Chinese).

    Google Scholar 

  • Wei, F., Xiao, Y. H., & Zhang, S. J. (2007). Design and performance analysis of HAT cycle systems with absorption heat pumps. Journal of Engineering Thermophysics, 28(1), 17–21. (in Chinese).

    Google Scholar 

  • Westerlund, L., & Dahl, J. (1994). Use of an open absorption heat-pump for energy conservation in a public swimming-pool. Applied Energy, 49(3), 275–300.

    Article  Google Scholar 

  • Wu, W., Ran, S., Shi, W., Wang, B., & Li, X. (2016). NH3-H2O water source absorption heat pump (WSAHP) for low temperature heating: Experimental investigation on the off-design performance. Energy, 115, 697–710.

    Article  Google Scholar 

  • Wu, W., Shi, W., Wang, B., & Li, X. (2015a). Theoretical comparisons between absorption heat pump and electrical heat pump for low temperature heating. Yokohama, Japan: International Congress of Refrigeration.

    Google Scholar 

  • Wu, W., Shi, W., Li, X., & Wang, B. (2015b). Air source absorption heat pump in district heating: Applicability analysis and improvement options. Energy Conversion and Management, 96, 197–207.

    Article  Google Scholar 

  • Wu, W., Wang, B., You, T., Shi, W., & Li, X. (2013a). A potential solution for thermal imbalance of ground source heat pump systems in cold regions: Ground source absorption heat pump. Renewable Energy, 59, 39–48.

    Article  Google Scholar 

  • Wu, W., Wang, B., Shi, W., & Li, X. (2013b). Crystallization analysis and control of ammonia-based air source absorption heat pump in cold regions. Advances in Mechanical Engineering, 5, 140341.

    Article  Google Scholar 

  • Wu, W., Wang, B., Shi, W., & Li, X. (2014a). Absorption heating technologies: A review and perspective. Applied Energy, 130, 51–71.

    Article  Google Scholar 

  • Wu, W., Wang, B., Shi, W., & Li, X. (2014b). An overview of ammonia-based absorption chillers and heat pumps. Renewable and Sustainable Energy Reviews, 31, 681–707.

    Article  Google Scholar 

  • Wu, W., Wang, B., Shi, W., & Li, X. (2014c). Techno-economic analysis of air source absorption heat pump: Improving economy from a design perspective. Energy and Buildings, 81, 200–210.

    Article  Google Scholar 

  • Wu, W., Zhang, X., Li, X., Shi, W., & Wang, B. (2012). Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions. Applied Thermal Engineering, 48, 349–358.

    Article  Google Scholar 

  • Yang, Q., Zhanh, X., Wang, X., Li, X., & Shi, W. (2011). Review on absorption thermal energy storage technologies. Chinese Science Bulletin, 56(9), 669–678.

    Article  Google Scholar 

  • Yin, J., Shi, L., Zhu, M. S., & Han, L. Z. (2000). Performance analysis of an absorption heat transformer with different working fluid combinations. Applied Energy, 67(3), 281–292.

    Article  Google Scholar 

  • Zhang, X., Hu, D., & Li, Z. (2014a). Performance analysis on a new multi-effect distillation combined with an open absorption heat transformer driven by waste heat. Applied Thermal Engineering, 62(1), 239–244.

    Article  Google Scholar 

  • Zhang, Y., Shi, W., & Zhang, Y. (2014b). From heat exchanger to heat adaptor: Concept, analysis and application. Applied Energy, 115, 272–279.

    Article  Google Scholar 

  • Zhao, Z., Zhou, F., Zhang, X., & Li, S. (2003). The thermodynamic performance of a new solution cycle in double absorption heat transformer using water/lithium bromide as the working fluids. International Journal of Refrigeration, 26(3), 315–320.

    Article  Google Scholar 

  • Ziegler, B., & Trepp, C. (1984). Equation of state for ammonia-water mixtures. International Journal of Refrigeration, 7(2), 101–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, W., Li, X., You, T. (2020). Fundamentals of Absorption Heating Technologies. In: Absorption Heating Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-0470-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0470-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0469-3

  • Online ISBN: 978-981-15-0470-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics