Skip to main content

The Potential of Natural Fibers for Automotive Sector

  • Chapter
  • First Online:

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Poor quality leads to poor efficiency. As the research progresses, the development in the sustainable material are also progresses. This change leads to enhancement in the efficiency of the product. Novel sustainable material is the need of the hour for the future development. Natural composite fits the best alternative to deal with environment problem. In the past decade natural fibers applications has been increasing as never before. These applications are aerospace, infrastructure, thermal etc. Metal like steel, aluminum, cast iron are some of the materials which have been dominating the industries before the introduction polymer composite. These metals have been dominating the market but for a long time but lacking in the environmental issues. Natural fibers have successfully filling that gap. Being biodegradable, it is nature friendly and easy to dispose off. Decreased weight, nature friendly and easy availability are the attractive characteristics that influences various industries towards natural fiber composite. The current segment deals with the various natural fiber composites and their applications in the industries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agu CV, Njoku OU, Chilaka FC, Okorie SA, Agbiogwn D (2012) Physico-chemical characterization of lignocellulosic fibre from Ampelocissus cavicaulis. Int J Basic Appl Sci 12(3):68–77

    Google Scholar 

  • Al-Qureshi HA (1999) The use of banana fibre reinforced composites for the development of a truck body. In: Second international wood and natural fibre composites symposium, Kassel/Germany, pp 1–8

    Google Scholar 

  • Alves C, Silva AJ, Reis LG, Freitas M, Rodrigues LB, Alves DE (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18(4):313–327. https://doi.org/10.1016/j.jclepro.2009.10.022

    Article  CAS  Google Scholar 

  • Bledzki AK, Faruk O, Sperber VE (2006) Cars from bio-fibres. Macromol Mater Eng 291(5):449–457

    Article  CAS  Google Scholar 

  • Cho D, Kim HJ, Drzal TL (2014) Surface treatment and characterization of natural fibers: effects on the properties of biocomposites. In: Sabu T, Kuruvilla J, Malhotra SK, Goda K, Sreekala MS (eds) Polymer composites, biocomposites, vol 3. Wiley-VCH, pp 133–178

    Google Scholar 

  • Dash BN, Rana AK, Mishra HK, Nayak SK, Tripathy SS (2000) Novel, Low-cost jute-polyester composites II: SEM observation of the fractured surfaces. Polym-Plast Technol Eng 39:333–350

    Article  CAS  Google Scholar 

  • Davoodi MM, Sapuan SM, Ahmad D, Ali A, Khalina A, Jonoobi M (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31(10):4927–4932. https://doi.org/10.1016/j.matdes.2010.05.021

    Article  CAS  Google Scholar 

  • Du Y, Yan N, Kortschot MT (2015) The use of ramie fibers as reinforcements in composites. In: Faruk O, Sain M (eds) Biofiber Reinforcement in Composite Materials, Woodhead Publishing Series in Composites Science and Engineering, vol 5, pp. 104–137

    Google Scholar 

  • Ellison GC, McNaught R, Eddleston EP (2002) The use of natural fibers in nonwoven structures for applications as automotive component substrates. Research Report, Ministry of Agriculture Fisheries and Food, UK

    Google Scholar 

  • Faruk O, Sain M (2015) Biofiber reinforcement in composite materials. Woodhead Publishing, Cambridge

    Google Scholar 

  • Fejeskozma Z, Kargerkocsis J (1994) Fracture-mechanical characterization of a glass- fiber mat-reinforced polypropylene by instrumented impact bending. J Reinf Plast Comp 13(9):822–834

    Article  CAS  Google Scholar 

  • Fogorasi MS, Barbu I (2017) The potential of natural fibers for the automotive sector—review. In: IOP conference on series: materials science and engineering 252:012044. https://doi.org/10.1088/1757-899x/252/1/012044

  • Gupta MK, Bharti A (2017) Natural fibre reinforced polymer composites: a review on dynamic mechanical properties. Current Trends in Fashion Technology & Textile Engineering 1(3):555563. https://doi.org/10.19080/CTFTTE.2017.01.555563

  • Hintermann M (2005) Automotive exterior parts from natural fibers, RIKO-2005. Hannover, Germany

    Google Scholar 

  • Huda MS, Drzal LT, Ray D, Mohanty AK, Mishra M (2008) Natural-fiber composites in the automotive sector. In: Properties and performance of natural-fibre composites. Woodhead Publishing, Oxford. ISBN 9781845692674.1

    Google Scholar 

  • Ishak MR, Leman Z, Sapuan SM, Edeerozey AMM, Othman IS (2010) Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites. Mater Sci Eng 11(1):1–6. https://doi.org/10.1088/1757-899X/11/1/012006

    Article  CAS  Google Scholar 

  • Kabir MM, Wang H, Aravinthan T, Cardona F, Lau K-T (2011) Effects of natural fibre surface on composite properties: a review. Energy Environ Sustain 2011:94–99

    Google Scholar 

  • Karus M, Kaup M (2002) Natural fibres in the European Automotive Industry. J Ind Hemp 7(1):119–131. https://doi.org/10.1300/J237v07n01_10

    Article  Google Scholar 

  • Komuraiah A, Shyam Kumar N, Durga Prasad B (2014) Chemical composition of natural fibers and its influence of their mechanical properties. Mech Compos Mater 50(3):359–376

    Article  CAS  Google Scholar 

  • Lan Mair R (2000) Tomorrow’s plastic cars, ATSE Focus no. 113

    Google Scholar 

  • Lee NJ, Jang J (1999) The effect of fiber content on the mechanical properties of glass fiber mat/polypropylene composites. Compos A 30:815–822

    Article  Google Scholar 

  • Lilholt H, Lawther JM (2000) Natural organic fibres. Chapter 10. In: Kelly A, Zweben C (eds) Comprehensive composite materials. Elsevier Science, pp 303–325

    Google Scholar 

  • Mobasher B (2011) Mechanics of fiber and textile reinforced cement composites. CRC Press, New York, p 562

    Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000a) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(277):1–2

    Article  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G Biofibers (2000) Biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276/277:1–25

    Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1–2):19–26

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal T (2005) Natural fibers, biopolymers, biocomposites. CRC Press, New York

    Book  Google Scholar 

  • Mueller DH, Krobjilowski A (2003) Improving the impact strength of natural fiber reinforced composites by specifically designed material and process parameters. Int Nonwovens J 12(2):31–38

    Google Scholar 

  • Mueller DH, Krobjilowski A (2004) Improving the impact strength of natural fiber reinforced composites by specifically designed material and process parameters. Int Nonwovens J 13(4)

    Google Scholar 

  • Muessig J (2002) Influence of fiber fineness on the properties of natural fiber composites. In: Proceedings 4th international wood and natural fiber composites symposium, Kassel/Germany, 10–11 Apr 2002

    Google Scholar 

  • Mwaikambo LY (2006) Review of the history, properties and application of plant fibres. Afr J Sci Technol (AJST) Sci Eng Ser 7:120–133

    Google Scholar 

  • Ndiyae D, Gueye M, Thiandoume C, Badji AM, Tidjani A (2015) Reinforcing fillers and coupling agents’ effects for performing wood polymer composites. Chapter 12. In: Thakur VJ, Kessler M (eds) Green biorenewable biocomposites: from knowledge to industrial applications. CRC Press, Boca Raton

    Google Scholar 

  • Oksman K, Skrifvars M, Selin JF (2003) Natural fibers as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  • Page DH, El-Hosseiny F, Winkler K, Lancaster APS (1977) Elastic modulus of single wood pulp fibers. Tappi 60:114–117

    Google Scholar 

  • Peças P, Carvalho H, Salman H, Leite M (2018) Natural fibre composites and their applications: a review. J Compos Sci 2:66. https://doi.org/10.3390/jcs2040066

    Article  CAS  Google Scholar 

  • Promper E (2010) Natural fibre reinforced polymers in automotive interior applications. In: Mussig J (ed) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, Chichester, pp 423–436

    Google Scholar 

  • Puglia D, Biagiotti J, Kenny JM (2004) A review on natural fiber-based composites Part II: application of natural reinforcements in composite materials for automotive industry. J Nat Fibres 1(3):23–65

    Article  CAS  Google Scholar 

  • Rana AK, Mandal A, Mitra BC, Jacobson R, Rowell R, Banerjee AN (1998) Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J Appl Polym Sci 69:329–338

    Article  CAS  Google Scholar 

  • Rana AK, Mitra BC, Banerjee AN (1999) Short jute fiber-reinforced polypropylene composites: dynamic mechanical study. J Appl Polym Sci 71:531–539

    Article  CAS  Google Scholar 

  • Reis JML (2006) Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Constr Build Mater 20(9):673–678

    Article  Google Scholar 

  • Saba N, Tahir PMd, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273. https://doi.org/10.3390/polym6082247

    Article  CAS  Google Scholar 

  • Sanjay MR, Arpitha GR, Yogesha B (2015) Study on mechanical properties of natural glass fibre reinforced polymer hybrid composites: a review. Mater Today Proc 2:2959–2967

    Article  Google Scholar 

  • Schuh TG (1999) Renewable materials for automotive applications. Daimler-Chrysler AG, Stuttgart

    Google Scholar 

  • Sherman LM (1999) Natural fibers: the new fashion in automotive plastics. Plast Technol Online 10

    Google Scholar 

  • Silva RV, Spinelli D, Bose Filho WW, Claro Neto S, Chierice GO, Tarpani JR (2006) Fracture toughness of natural fibers/castor oil polyurethane composites. Compos Sci Technol 66(10):1328–1335. https://doi.org/10.1016/j.compscitech.2005.10.012

    Article  CAS  Google Scholar 

  • Suddell B (2003) The current situation and future outlook for natural fibers within the automotive industry, Joint Meeting of the Intergovernmental Group on Hard Fibers and on Jute; Kenaf and Allied Fibers. Salvador, Brazil

    Google Scholar 

  • Suddell BC, Evans WJ (2005) Natural fiber composites in automotive applications. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC Press, New York, p 113

    Google Scholar 

  • Tajvidi M, Falk RH, Hermanson JC (2006) Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. J Appl Polym Sci 101:4341–4349

    Article  CAS  Google Scholar 

  • Thomas GS (2008) Renewable materials for automotive applications. Daimler Chrysler AG, Stuttgart

    Google Scholar 

  • Witayakran S, Smitthipong W, Wangpradid R, Chollakup R (2017) Natural fiber composites: review of recent automotive trends. https://doi.org/10.1016/b978-0-12-803581-8.04180-1

  • Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos A Appl Sci Manuf 41(4):499–505

    Article  Google Scholar 

  • Zin MH, Abdan K, Mazlan N, Zainudin ES, Liew KE (2018) The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibers (PALF) and adhesion to epoxy resin. IOP Conf Ser Mater Sci Eng 368:012035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Gangil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S.K., Gupta, A., Patel, V.K., Gangil, B., Ranikoti, L. (2019). The Potential of Natural Fibers for Automotive Sector. In: Katiyar, J., Bhattacharya, S., Patel, V., Kumar, V. (eds) Automotive Tribology. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0434-1_3

Download citation

Publish with us

Policies and ethics