Skip to main content

Potential of Bio-lubricants in Automotive Tribology

  • Chapter
  • First Online:
Book cover Automotive Tribology

Abstract

Lubricants are used as anti-friction and heat absorbing media and therefore lead to smooth and reliable functions/operations, and therefore reduces the risks of frequent failures and thus enhance the durability/life-cycle of vehicle. At present, due to worldwide concern in protecting the environment from pollution and the increased prices and depletion of reserve crude oil, there has been growing interest to formulate and apply an alternative solution with the research and development in environment-friendly bio-lubricants from natural resources. A bio-lubricant is renewable and sustainable lubricants which is biodegradable, non-toxic, and emits net zero greenhouse gas. This chapter deals the potential of vegetable oil-based bio-lubricant for automotive application. In this chapter, the source, properties, as well as advantages and disadvantages of the bio-lubricant has been detailed. Further, the future prospects and challenges of bio-lubricants as potential alternative of conventional lubricants has been elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhvaryu A, Erhan SZ, Perez JM (2004) Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants. Wear 257(3–4):359–367

    Article  CAS  Google Scholar 

  • Adhvaryu A, Liu Z, Erhan SZ (2005) Synthesis of novel alkoxylated triacylglycerols and their lubricant base oil properties. Ind Crops Prod 21(1):113–119

    Article  CAS  Google Scholar 

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33(3):233–271

    Article  CAS  Google Scholar 

  • Agrawal SM, Lahane S, Patil NG, Brahmankar PK (2014) Experimental investigations into wear characteristics of M2 steel using cotton seed oil. Proced Eng 97:4–14

    Article  CAS  Google Scholar 

  • Ahmed NS, Nassar AM (2013) Lubrication and lubricants. Tribol Fundam Adv, In tech Open

    Google Scholar 

  • Alves SM, Barros BS, Trajano MF, Ribeiro KSB, Moura E (2013) Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol Int 65:28–36

    Article  CAS  Google Scholar 

  • Anastopoulos G, Lois E, Serdari A, Zanikos F, Stournas S, Kalligeros S (2001) Lubrication properties of low-sulfur diesel fuels in the presence of specific types of fatty acid derivatives. Energy Fuels 15(1):106–112

    Article  CAS  Google Scholar 

  • Arumugam S, Sriram G (2012) Effect of bio-lubricant and biodiesel-contaminated lubricant on tribological behavior of cylinder liner–piston ring combination. Tribol Trans 55(4):438–445

    Article  CAS  Google Scholar 

  • Arumugam S, Sriram G (2013) Synthesis and characterisation of rapeseed oil bio-lubricant–its effect on wear and frictional behaviour of piston ring–cylinder liner combination. Proc Inst Mech Eng Part J: J Eng Tribol 227(1):3–15

    Article  CAS  Google Scholar 

  • Asadauskas S, Perez JM, Duda JL (1996) Oxidative stability and antiwear properties of high oleic vegetable oils. Chem Eng 52:877–882

    CAS  Google Scholar 

  • Asadauskas S, Perez JH, Duda JL (1997) Lubrication properties of castor oil–potential basestock for biodegradable lubricants. Tribol Lubr Technol 53(12):35

    CAS  Google Scholar 

  • Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H (2013) Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev 18:211–245

    Article  CAS  Google Scholar 

  • Bekal S, Bhat NR (2012) Bio-lubricant as an alternative to mineral oil for a CI engine—an experimental investigation with pongamia oil as a lubricant. Energy Sourc Part A Recov Util Environ Effect 34(11):1016–1026

    Article  CAS  Google Scholar 

  • Chauhan PS, Chhibber VK (2013) Non-edible oil as a source of bio-lubricant for industrial applications: a review. Int J Eng Sci Innov Technol 2:299–305

    Google Scholar 

  • Das D, Pathak MK, Kumar S, Saini AK, Pant PK (2012) Effect on diesel engine emissions with application of biodiesel fuel. Int J Res Eng Appl Sci 2:940–950

    Google Scholar 

  • Deffeyes KS (2008) Hubbert’s peak: the impending world oil shortage, New edn. Princeton University Press, Princeton

    Google Scholar 

  • Erhan SZ, Asadauskas S (2000) Lubricant basestocks from vegetable oils. Ind Crops Prod 11(2–3):277–282

    Article  CAS  Google Scholar 

  • Erhan SZ, Perez JM (2002) Biobased industrial fluids and lubricants. AOCS Publishing

    Google Scholar 

  • Erhan SZ, Sharma BK, Perez JM (2006) Oxidation and low temperature stability of vegetable oil-based lubricants. Ind Crops Prod 24(3):292–299

    Article  CAS  Google Scholar 

  • Fazal MA, Haseeb ASMA, Masjuki HH (2011) Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel. Energy 36(5):3328–3334

    Article  CAS  Google Scholar 

  • Fazal MA, Haseeb ASMA, Masjuki HH (2012) Degradation of automotive materials in palm biodiesel. Energy 40(1):76–83

    Article  CAS  Google Scholar 

  • Gerbig Y, Ahmed SIU, Gerbig FA, Haefke H (2004) Suitability of vegetable oils as industrial lubricants. J Synth Lubr 21(3):177–191

    Article  CAS  Google Scholar 

  • Goodstein DL (2005) Out of gas: the end of the age of oil. WW Norton & Company, New York

    Google Scholar 

  • Haseeb ASMA, Sia SY, Fazal MA, Masjuki HH (2010) Effect of temperature on tribological properties of palm biodiesel. Energy 35(3):1460–1464

    Article  CAS  Google Scholar 

  • Hasni K, Ilham Z, Dharma S, Varman M (2017) Optimization of biodiesel production from Brucea javanica seeds oil as novel non-edible feedstock using response surface methodology. Energy Convers Manag 149:392–400

    Article  CAS  Google Scholar 

  • Iqbal M (2014) Tribology: science of lubrication to reduce friction and wear. Int J Mech Eng Robot Res 3(3):648

    Google Scholar 

  • Jaina AK, Suhanea A (2013) Capability of biolubricants as alternative lubricant in industrial and maintenance applications. Int J Curr Eng Technol 3

    Google Scholar 

  • Jayadas NH, Nair KB, Ajithkumar G (2007) Tribological evaluation of coconut oil as an environment-friendly lubricant. Tribol Int 40(2):350–354

    Article  CAS  Google Scholar 

  • Johansson LE, Lundin ST (1979) Copper catalysts in the selective hydrogenation of soybean and rapeseed oils: I. The activity of the copper chromite catalyst. J Am Oil Chem Soc 56(12):974–980

    Article  CAS  Google Scholar 

  • Johnson M, Miller M (2010) Eco-friendly fluids for the lubricants industry. Tribol Lubr Technol 66(10):28–34

    CAS  Google Scholar 

  • Kalam MA, Masjuki HH, Varman M, Liaquat AM (2011) Friction and wear characteristics of waste vegetable oil contaminated lubricants. In: Proceedings of regional tribology conference 2011: RTC2011. Malaysian Tribology Society, p 47

    Google Scholar 

  • Karaosmanoglu F, Tuter M, Gollu E, Yanmaz S, Altintig E (1999) Fuel properties of cottonseed oil. Energy Sourc 21(9):821–828

    Article  CAS  Google Scholar 

  • Kumar A, Sharma S (2011) Potential non-edible oil resources as biodiesel feedstock: an Indian perspective. Renew Sustain Energy Rev 15(4):1791–1800

    Article  CAS  Google Scholar 

  • Lathi PS, Mattiasson B (2007) Green approach for the preparation of biodegradable lubricant base stock from epoxidized vegetable oil. Appl Catal B 69(3–4):207–212

    Article  CAS  Google Scholar 

  • Lebedevas S, Makareviciene V, Sendzikiene E, Zaglinskis J (2013) Oxidation stability of biofuel containing Camelina sativa oil methyl esters and its impact on energy and environmental indicators of diesel engine. Energy Convers Manag 65:33–40

    Article  CAS  Google Scholar 

  • Li X, He XY, Li ZL, Wang YD, Wang CY, Shi H, Wang F (2012) Enzymatic production of biodiesel from Pistacia chinensis bge seed oil using immobilized lipase. Fuel 92(1):89–93

    Article  CAS  Google Scholar 

  • Maleque M (1997) Investigation of the anti-wear characteristics of palm oil methyl ester using a four-ball tribometer test. Wear 206(1):179–186

    Google Scholar 

  • Maleque MA, Masjuki HH, Ishak M (1998) Bio-fuel-contaminated lubricant and hardening effects on the friction and wear of AISI 1045 steel. Tribol Trans 41(1):155–159

    Article  CAS  Google Scholar 

  • Maleque MA, Masjuki HH, Haseeb ASMA (2000) Effect of mechanical factors on tribological properties of palm oil methyl ester blended lubricant. Wear 239(1):117–125

    Article  CAS  Google Scholar 

  • Miller AL, Stipe CB, Habjan MC, Ahlstrand GG (2007) Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine. Environ Sci Technol 41(19):6828–6835

    Article  CAS  Google Scholar 

  • Mobarak HM, Mohamad EN, Masjuki HH, Kalam MA, Mahmud KAHA, Habibullah M, Ashraful AM (2014) The prospects of biolubricants as alternatives in automotive applications. Renew Sustain Energy Rev 33:34–43

    Article  CAS  Google Scholar 

  • Mofijur M, Masjuki HH, Kalam MA, Hazrat MA, Liaquat AM, Shahabuddin M, Varman M (2012) Prospects of biodiesel from Jatropha in Malaysia. Renew Sustain Energy Rev 16(7):5007–5020

    Article  Google Scholar 

  • Munoz RAA, Fernandes DM, Santos DQ, Barbosa TGG, Sousa RMF (2012) Biodiesel: production, characterization, metallic corrosion and analytical methods for contaminants. In: Biodiesel-feedstocks, production and applications. IntechOpen

    Google Scholar 

  • Nagendramma P, Kaul S (2012) Development of ecofriendly/biodegradable lubricants: an overview. Renew Sustain Energy Rev 16(1):764–774

    Article  CAS  Google Scholar 

  • No SY (2011) Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: a review. Renew Sustain Energy Rev 15(1):131–149

    Article  CAS  Google Scholar 

  • Panchal TM, Patel A, Chauhan DD, Thomas M, Patel JV (2017) A methodological review on bio-lubricants from vegetable oil based resources. Renew Sustain Energy Rev 70:65–70

    Article  CAS  Google Scholar 

  • Raj FRMS, Sahayaraj JW (2010) A comparative study over alternative fuel (biodiesel) for environmental friendly emission. In: Recent advances in space technology services and climate change 2010 (RSTS & CC-2010), IEEE, pp 80–86

    Google Scholar 

  • Reeves CJ, Siddaiah A, Menezes PL (2017) A review on the science and technology of natural and synthetic biolubricants. J Bio-Tribo Corr 3(1):11

    Article  Google Scholar 

  • Ruggiero A, D’Amato R, Merola M, Valašek P, Müller M (2017) Tribological characterization of vegetal lubricants: comparative experimental investigation on Jatropha curcas L. oil, rapeseed methyl ester oil, hydrotreated rapeseed oil. Tribol Int 109:529–540

    Article  CAS  Google Scholar 

  • Salimon J, Salih N, Yousif E (2010) Biolubricants: Raw materials, chemical modifications and environmental benefits. Eur J Lipid Sci Technol 112(5):519–530

    CAS  Google Scholar 

  • Sharma YC, Singh B (2010) An ideal feedstock, kusum (Schleichera triguga) for preparation of biodiesel: optimization of parameters. Fuel 89(7):1470–1474

    Article  CAS  Google Scholar 

  • Singer CJ, Williams TI (1954) A history of technology, vol 609. Clarendon Press

    Google Scholar 

  • Singh AK (2011) Castor oil-based lubricant reduces smoke emission in two-stroke engines. Ind Crops Prod 33(2):287–295

    Article  CAS  Google Scholar 

  • Singh AK, Chamoli A (2013) Composition of biodegradable gear oil. U.S. Patent 8,557,754, issued October 15, 2013

    Google Scholar 

  • Singh D, Singh SP (2010a) Low cost production of ester from non edible oil of Argemone mexicana. Biomass Bioenerg 34(4):545–549

    Article  CAS  Google Scholar 

  • Singh SP, Singh D (2010b) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14(1):200–216

    Article  CAS  Google Scholar 

  • Singh AK, Pandey NK, Gupta AK (2010) Composition of lubricating oil for two stroke gasoline engine and process for the preparation thereof. U.S. Patent 7,825,077, issued 2 Nov 2010

    Google Scholar 

  • Singh AK, Pandey NK, Gupta AK (2011) Composition of hydraulic fluid and process for the preparation thereof. U.S. Patent 8,034,751, issued October 11, 2011

    Google Scholar 

  • Singh AK, Pandey NK, Gupta AK (2014) Composition of insulating fluid and process for the preparation thereof. U.S. Patent 8,658,575, issued February 25, 2014

    Google Scholar 

  • Singh Y, Farooq A, Raza A, Mahmood MA, Jain S (2017a) Sustainability of a non-edible vegetable oil based bio-lubricant for automotive applications: a review. Process Saf Environ Prot 111:701–713

    Article  CAS  Google Scholar 

  • Singh Y, Singla A, Singh AK (2017b) Tribological characteristics of Mongongo-oil–based biodiesel blended lubricant. Energy Sourc Part A: Recov Util Environ Effect 39(3):332–338

    Article  CAS  Google Scholar 

  • Singh Y, Singla A, Singh AK, Upadhyay AK (2018) Tribological characterization of Pongamia pinnata oil blended bio-lubricant. Biofuels 9(4):523–530

    Article  CAS  Google Scholar 

  • Singh Y, Sharma A, Singla A (2019) Non-edible vegetable oil–based feedstocks capable of bio-lubricant production for automotive sector applications—a review. Environ Sci Pollut Res 1–16

    Google Scholar 

  • Ssempebwa JC, Carpenter DO (2009) The generation, use and disposal of waste crankcase oil in developing countries: a case for Kampala district, Uganda. J Hazard Mater 161(2–3):835–841

    Article  CAS  Google Scholar 

  • Suhane A, Rehman A, Khaira HK (2012) Potential of non edible vegetable oils as an alternative lubricants in automotive applications. Int J Eng Res Appl 2(5):1330–1335

    Google Scholar 

  • Sulek MW, Kulczycki A, Malysa A (2010) Assessment of lubricity of compositions of fuel oil with biocomponents derived from rape-seed. Wear 268(1–2):104–108

    Article  CAS  Google Scholar 

  • Syahir AZ, Zulkifli NWM, Masjuki HH, Kalam MA, Alabdulkarem A, Gulzar M, Khuong LS, Harith MH (2017) A review on bio-based lubricants and their applications. J Clean Prod 168:997–1016

    Article  CAS  Google Scholar 

  • Thames SF, Yu H (1999) Cationic UV-cured coatings of epoxide-containing vegetable oils. Surf Coat Technol 115(2–3):208–214

    Article  CAS  Google Scholar 

  • Ting CC, Chen CC (2011) Viscosity and working efficiency analysis of soybean oil based bio-lubricants. Measurement 44(8):1337–1341

    Article  Google Scholar 

  • Totten GE., Shah RJ, Forester DR (2019) Fuels and lubricants handbook: technology, properties, performance, and testing. ASTM International

    Google Scholar 

  • Tung SC, McMillan ML (2004) Automotive tribology overview of current advances and challenges for the future. Tribol Int 37(7):517–536

    Article  CAS  Google Scholar 

  • Usta N, Aydoğan B, Con AH, Uğuzdoğan E, Özkal SG (2011) Properties and quality verification of biodiesel produced from tobacco seed oil. Energy Convers Manag 52(5):2031–2039

    Article  CAS  Google Scholar 

  • Wang R, Hanna MA, Zhou WW, Bhadury PS, Chen Q, Song BA, Yang S (2011) Production and selected fuel properties of biodiesel from promising non-edible oils: Euphorbia lathyris L., Sapium sebiferum L. and Jatropha curcas L. Bioresour Tech 102(2):1194–1199

    Article  CAS  Google Scholar 

  • Wang R, Zhou WW, Hanna MA, Zhang YP, Bhadury PS, Wang Y, Song BA, Yang S (2012) Biodiesel preparation, optimization, and fuel properties from non-edible feedstock. Datura stramonium L. Fuel 91(1):182–186

    Article  CAS  Google Scholar 

  • Willing A (2001) Lubricants based on renewable resources–an environmentally compatible alternative to mineral oil products. Chemosphere 43(1):89–98

    Article  CAS  Google Scholar 

  • Zulkifli NWM, Kalam MA, Masjuki HH, Shahabuddin M, Yunus R (2013) Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant. Energy 54:167–173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, M.K., Joshi, A., Mer, K.K.S., Katiyar, J.K., Patel, V.K. (2019). Potential of Bio-lubricants in Automotive Tribology. In: Katiyar, J., Bhattacharya, S., Patel, V., Kumar, V. (eds) Automotive Tribology. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0434-1_11

Download citation

Publish with us

Policies and ethics