Skip to main content

Nonlocal Conditions for Semi-linear Fractional Differential Equations with Hilfer Derivative

  • Conference paper
  • First Online:
Fractional Calculus (ICFDA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 303))

Abstract

This paper studies the existence of solutions for nonlocal semi-linear fractional differential equations of Hilfer type in Banach space by using the non-compact measure method in the weighted space of continuous functions. The main result is illustrated with the aid of an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, R.P., Hedia, B., Beddani, M.: Structure of solutions sets for imlpulsive fractional differential equation. J. Fract. Calc. Appl 9(1), 15–34 (2018)

    Google Scholar 

  2. Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems. Kluwer, Dordrecht (2003)

    Book  Google Scholar 

  3. Bothe, D.: Multivalued perturbations of \(m\)-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998)

    Article  MathSciNet  Google Scholar 

  4. Browder, F.E., Gupta, G.P.: Topological degree and nonlinear mappings of analytic type in Banach spaces. J. Math. Anal. Appl. 26, 390–402 (1969)

    Article  MathSciNet  Google Scholar 

  5. Deimling, K.: Nonlinear Functional Analysis. Springer (1985)

    Google Scholar 

  6. Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179, 630–637 (1993)

    Article  MathSciNet  Google Scholar 

  7. Diethelm, K.: Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  8. Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Djebali, S., Górniewicz, L., Ouahab, A.: Solutions Sets for Differential Equations and Inclusions. De Gruyter, Berlin (2013)

    Book  Google Scholar 

  10. Dragoni, R., Macki, J.W., Nistri, P., Zecca, P.: Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics Series 342. Longman, Harlow (1996)

    MATH  Google Scholar 

  11. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64, 1616–1626 (2012)

    Article  MathSciNet  Google Scholar 

  13. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, pp. 87–429 (2000)

    Chapter  Google Scholar 

  14. Hilfer, R.: Experimental evidence for fractional time evolution in glass materials. Chem. Phys. 284, 399–408 (2002)

    Article  Google Scholar 

  15. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter, Berlin (2001)

    Book  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam (2006)

    Chapter  Google Scholar 

  17. Toledano, J.M.A., Benavides, T.D., Azedo, G.L.: Measures of Noncompactness in Metric Fixed Point Theory. Birkhauser, Basel (1997)

    Book  Google Scholar 

  18. Wang, J.R., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266, 850–859 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

  20. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press (2016)

    Google Scholar 

Download references

Acknowledgements

The author would like to express his warmest thanks to all members of ICFDA18 International Conference on Fractional Differentiation and its Applications 2018 for his/her valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benaouda Hedia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hedia, B. (2019). Nonlocal Conditions for Semi-linear Fractional Differential Equations with Hilfer Derivative. In: Agarwal, P., Baleanu, D., Chen, Y., Momani, S., Machado, J. (eds) Fractional Calculus. ICFDA 2018. Springer Proceedings in Mathematics & Statistics, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-15-0430-3_5

Download citation

Publish with us

Policies and ethics