Skip to main content

Closed-Form Discretization of Fractional-Order Differential andĀ Integral Operators

  • Conference paper
  • First Online:
Fractional Calculus (ICFDA 2018)

Abstract

This paper introduces a closed-form discretization of fractional-order differential or integral Laplace operators. The proposed method depends on extracting the necessary phase requirements from the phase diagram. The magnitude frequency response follows directly due to the symmetry of the poles and zeros of the finite z-transfer function. Unlike the continued fraction expansion technique, or the infinite impulse response of second-order IIR-type filters, the proposed technique generalizes the Tustin operator to derive a first-, second-, third-, and fourth-order discrete-time operators (DTO) that are stable and of minimum phase. The proposed method depends only on the order of the Laplace operator. The resulted discrete-time operators enjoy flat-phase response over a wide range of discrete-time frequency spectrum. The closed-form DTO enables one to identify the stability regions of fractional-order discrete-time systems or even to design discrete-time fractional-order \(PI^{\lambda }D^{\mu }\) controllers. The effectiveness of this work is demonstrated via several numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Alaoui, M.A.: Novel digital integrator and differentiator. IEE Electron. Lett. 29(4), 376ā€“378 (1993)

    ArticleĀ  Google ScholarĀ 

  2. Al-Alaoui, M.A.: Novel stable higher order s-to-z transforms. IEEE Trans. Circuit. Syst. I: Fundam. Theory Appl. 48(11), 1326ā€“1329 (2001)

    ArticleĀ  Google ScholarĀ 

  3. Al-Alaoui, M.A.: Al-Alaoui operator and the \(\alpha \)-approximation for discretization of analog system. FACTA Universitatis (NIS) 19(1), 143ā€“146 (2006)

    Google ScholarĀ 

  4. Barbosa, R.S., Machado, J.A.T., Ferreira, I.M.: Pole-zero approximations of digital fractionalorder integrators and diferentiators using modeling techniques. In: 16th IFACWorld Congress. Prague, Czech Republic (2005)

    Google ScholarĀ 

  5. Chen, Y., Moore, K.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuit. Syst.I: Fundam. Theory Appl. 49(3), 363ā€“367 (2002)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  6. Chen, Y., Vinagre, B.M., Podlubny, I.: Continued fraction expansion to discretize fractionalorder derivatives - an expository review. Nonlinear Dyn. 38(1), 155ā€“170 (2004)

    ArticleĀ  Google ScholarĀ 

  7. DorÄĆ”k, L., PetrĆ”Å”, I., TerpĆ”k, J., Zborovjan, M.: Comparison of the method for discrete approximation of the fractional order operator. In: Proceedings of the International Carpathian Control Conference (ICCCā€™2003), pp. 851ā€“856. High Tatras, Slovak Republic (2003)

    Google ScholarĀ 

  8. El-Khazali, R.: Biquadratic approximation of fractional-order Laplacian operators. In: 2013 IEEE 56th International Midwest Symposium on Circuits and Systems(MWSCAS), pp. 69ā€“72. Columbus, OH (2013)

    Google ScholarĀ 

  9. El-Khazali, R.: Discretization of fractional-order differentiators and integrators. In: 19th IFAC World Congress, pp. 2016ā€“2021. Cape Town, South Africa (2014)

    Google ScholarĀ 

  10. Gupta, M., Yadav, R.: Design of improved fractional-order integrators using indirect discretization method. Int. J. Comput. Appl. 59(14) (2012)

    ArticleĀ  Google ScholarĀ 

  11. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations, vol. 204. North-Holland Mathematics Studies, Elsevier, Amsterdam (2006)

    BookĀ  Google ScholarĀ 

  12. Krishna, B.T.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 59(3), 386ā€“426 (2011)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  13. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704ā€“719 (1986)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  14. Machado, J.T.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27(2ā€“3), 107ā€“122 (1997)

    MATHĀ  Google ScholarĀ 

  15. Machado, J.T.: Fractional-order derivative approximations in discrete-time control systems. Syst. Anal. Model. Simul. 34, 419ā€“434 (1999)

    MATHĀ  Google ScholarĀ 

  16. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, vol. 2, pp. 963ā€“968. Lille, France (1996)

    Google ScholarĀ 

  17. Nie, B., Li, W., Ma, H., Wang, D., Liang, X.: Research of direct discretization method of fractional order differentiator/integrator based on rational function approximation. In: Tarn, T.J., Chen, S.B., Fang, G. (eds.) RoboticWelding, Intelligence and Automation. Lecture Notes in Electrical Engineering, pp. 479ā€“485. Springer, Berlin, Heidelberg (2011)

    Google ScholarĀ 

  18. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATHĀ  Google ScholarĀ 

  19. Ortigueira, M.D., Serralheiro, A.J.: Pseudo-fractional ARMA modelling using a double Levinson recursion. IET Control Theory Appl. 1(1), 173ā€“178 (2007)

    ArticleĀ  Google ScholarĀ 

  20. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuit. Syst. I: Fundam. Theory Appl. 47(1), 25ā€“39 (2000)

    ArticleĀ  Google ScholarĀ 

  21. Podlubny, I.: The Laplace transform method for linear differential equations of the fractional order. Tech. Rep. UEF-02-9, Slovak Academy of Sciences Institute of Experimental Physics, Kosice, Slovakia (1994)

    Google ScholarĀ 

  22. Podlubny, I.: Fractional differential equations, Volume 198: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution. Mathematics in Science and Engineering. Academic Press, San Diego (1998)

    Google ScholarĀ 

  23. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives and Some of Their Applications. Nauka i Tekhnika, Minsk (1987)

    MATHĀ  Google ScholarĀ 

  24. Siami, M., Tavazoei, M.S., Haeri, M.: Stability preservation analysis in direct discretization of fractional order transfer functions. Signal Process. 91(3), 508ā€“512 (2011)

    ArticleĀ  Google ScholarĀ 

  25. Vinagre, B., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calculus Appl. Anal. 3(3), 231ā€“248 (2000)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  26. Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractionalorder differentiator/integrator. J. Franklin Inst. 340(5), 349ā€“362 (2003)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyad El-Khazali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Khazali, R., Machado, J.A.T. (2019). Closed-Form Discretization of Fractional-Order Differential andĀ Integral Operators. In: Agarwal, P., Baleanu, D., Chen, Y., Momani, S., Machado, J. (eds) Fractional Calculus. ICFDA 2018. Springer Proceedings in Mathematics & Statistics, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-15-0430-3_1

Download citation

Publish with us

Policies and ethics