Skip to main content

Animal Flaviviruses

  • Chapter
  • First Online:

Part of the book series: Livestock Diseases and Management ((LDM))

Abstract

The burden of Flavivirus has made the whole world susceptible towards its infection. Japanese encephalitis virus (JEV) is the causative agent of Japanese encephalitis, a paediatric disease causing mortality and morbidity in children but is not limited to them. Animals are playing a crucial role in Flavivirus life cycle such as pigs are amplifying host for JEV and migratory birds are reservoirs for WNV. The resurgence of JEV majorly occurs at the time of ambient temperature and precipitation facilitating favourable breeding habitats of mosquitoes generally in paddy fields. WNV also causes neurological diseases like encephalitis in humans and mostly in horses. Despite the differences in pathogenesis and tropism, flaviviruses exhibit similarity in the overall genome organisation. CD209, C-type lectin receptor, also known as DC-SIGN, is crucial for virus attachment both for JEV and WNV. Host immune response during Flavivirus infection involves both innate and adaptive immune responses for clearance of the virus. Several vaccine candidates are available for human use; however, vaccine for livestock is underdeveloped. To improve the life expectancy of animals live attenuated virus or inactivated virus is used for the vaccination. This chapter majorly focuses on replication cycle, incidences, and prevalence in livestock, transmission cycle, risk factors, immunobiology, diagnostics, prevention, and control strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CDC:

Centres for Disease Control and Prevention

DCs:

Dendritic cells

DENV:

Dengue virus

JEV:

Japanese encephalitis virus

MIF:

Macrophage migration inhibitory factor

NTPase:

Nucleotide 5′ triphosphatase

PRNT:

Plaque reduction neutralisation assay

TNF-α:

Tumour necrosis factor alpha

WHO:

World Health Organization

WNV:

West Nile virus

YFV:

Yellow fever virus

References

  • Apte-Sengupta S, Sirohi D, Kuhn RJ (2014) Coupling of replication and assembly in flaviviruses. Curr Opin Virol 9:134–142

    Article  CAS  PubMed  Google Scholar 

  • Arjona A, Foellmer HG, Town T, Leng L, McDonald C, Wang T, Wong SJ, Montgomery RR, Fikrig E, Bucala R (2007) Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest 117(10):3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benelli G, Jeffries CL, Walker T (2016) Biological control of mosquito vectors: past, present, and future. Insects 7(4):E52

    Article  PubMed  Google Scholar 

  • Bouffard JP, Riudavets MA, Holman R, Rushing EJ (2004) Neuropathology of the brain and spinal cord in human West Nile virus infection. Clin Neuropathol 23(2):59–61

    CAS  PubMed  Google Scholar 

  • Brandler S, Tangy F (2013) Vaccines in development against West Nile virus. Viruses 5(10):2384–2409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broutet N, Krauer F, Riesen M, Khalakdina A, Almiron M, Aldighieri S, Espinal M, Low N, Dye C (2016) Zika virus as a cause of neurologic disorders. N Engl J Med 374(16):1506–1509

    Article  CAS  PubMed  Google Scholar 

  • Byrne SN, Halliday GM, Johnston LJ, King NJ (2001) Interleukin-1β but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J Investig Dermatol 117(3):702–709

    Article  CAS  PubMed  Google Scholar 

  • Camenga DL, Nathanson N, Cole GA (1974) Cyclophosphamide-potentiated West Nile viral encephalitis: relative influence of cellular and humoral factors. J Infect Dis 130(6):634–641

    Article  CAS  PubMed  Google Scholar 

  • Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD, Ginsburg AS (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89(10):766–774, 774A–774E

    Article  PubMed  PubMed Central  Google Scholar 

  • Cappelle J, Duong V, Pring L, Kong L, Yakovleff M, Prasetyo DB, Peng B, Choeung R, Duboz R, Ong S, Sorn S, Dussart P, Tarantola A, Buchy P, Chevalier V (2016) Intensive circulation of Japanese encephalitis virus in peri-urban sentinel pigs near Phnom Penh, Cambodia. PLoS Negl Trop Dis 10(12):e0005149

    Article  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (2013) West Nile virus in the United States: guidelines for surveillance, prevention, and control. https://www.cdc.gov/westnile/resources/pdfs/wnvguidelines.pdf. Accessed 28-2-2018

  • Centers for Disease Control and Prevention (CDC) (2002) West Nile virus activity—United States, 2001. MMWR Morb Mortal Wkly Rep 51(23):497–501

    Google Scholar 

  • Chen YY, Lin JW, Fan YC, Chiou SS (2014) Detection and differentiation of genotype I and III Japanese encephalitis virus in mosquitoes by multiplex reverse transcriptase-polymerase chain reaction. Transbound Emerg Dis 61(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Danis K, Papa A, Theocharopoulos G, Dougas G, Athanasiou M, Detsis M, Baka A, Lytras T, Mellou K, Bonovas S, Panagiotopoulos T (2011) Outbreak of West Nile virus infection in Greece, 2010. Emerg Infect Dis 17(10):1868–1872

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis CT, Beasley DW, Guzman H, Siirin M, Parsons RE, Tesh RB, Barrett AD (2004) Emergence of attenuated West Nile virus variants in Texas, 2003. Virology 330(1):342–350

    Article  CAS  PubMed  Google Scholar 

  • Dhanze H, Bhilegaonkar KN, Ravi Kumar GV, Thomas P, Chethan Kumar HB, Suman Kumar M, Rawat S, Kerketta P, Rawool DB, Kumar A (2015) Comparative evaluation of nucleic acid-based assays for detection of Japanese encephalitis virus in swine blood samples. Arch Virol 160(5):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Diamond MS, Sitati EM, Friend LD, Higgs S, Shrestha B, Engle M (2003) A critical role for induced IgM in the protection against West Nile virus infection. J Exp Med 198(12):1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlanger TE, Weiss S, Keiser J, Utzinger J, Wiedenmayer K (2009) Past, present, and future of Japanese encephalitis. Emerg Infect Dis 15(1):1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulmali PV, Sapkal GN, Athawale S, Gore MM, Mishra AC, Bondre VP (2011) Introduction of Japanese encephalitis virus genotype I, India. Emerg Infect Dis 17(2):319–321

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Tapia D, Hassett DE, Mitchell WJ Jr, Johnson GC, Kleiboeker SB (2007) West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol 13(2):130–138

    Article  CAS  PubMed  Google Scholar 

  • Garg RK, Malhotra HS, Jain A, Kumar N (2017) Dengue encephalopathy: very unusual neuroimaging findings. J Neurovirol 23(5):779–782

    Article  PubMed  Google Scholar 

  • Gray TJ, Webb CE (2014) A review of the epidemiological and clinical aspects of West Nile virus. Int J Gen Med 7:193–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulati BR, Singha H, Singh BK, Virmani N, Khurana SK, Singh RK (2011) Serosurveillance for Japanese encephalitis virus infection among equines in India. J Vet Sci 12(4):341–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Hegde P, Lecerf M, Nain M, Kaur M, Kalia M, Vrati S, Bayry J, Lacroix-Desmazes S, Kaveri SV (2014) Japanese encephalitis virus expands regulatory T cells by increasing the expression of PD-L1 on dendritic cells. Eur J Immunol 44(5):1363–1374

    Article  CAS  PubMed  Google Scholar 

  • Haikerwal A, Bhatt ML, Saxena SK (2017) Reducing the global burden of dengue: steps toward preventive methods. Arch Prev Med 2(1):28–33

    Article  Google Scholar 

  • Hayes EB, Gubler DJ (2006) West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med 57:181–194

    Article  CAS  PubMed  Google Scholar 

  • Hobson-Peters J (2012) Approaches for the development of rapid serological assays for surveillance and diagnosis of infections caused by zoonotic flaviviruses of the Japanese encephalitis virus serocomplex. J Biomed Biotechnol 2012:379738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurlbut HS, Rizk F, Taylor RM, Work TH (1956) A study of the ecology of West Nile virus in Egypt. Am J Trop Med Hyg 5(4):579–620

    Article  CAS  PubMed  Google Scholar 

  • Impoinvil DE, Baylis M, Solomon T (2013) Japanese encephalitis: on the One Health agenda. Curr Top Microbiol Immunol 365:205–247

    PubMed  Google Scholar 

  • Karabatsos N (1978) Supplement to international catalogue of arboviruses including certain other viruses of vertebrates. Am J Trop Med Hyg 27(2 Pt 2 Suppl):372–440

    CAS  PubMed  Google Scholar 

  • Karunaratne SH, Hemingway J (2000) Insecticide resistance spectra and resistance mechanisms in populations of Japanese encephalitis vector mosquitoes, Culex tritaeniorhynchus and Cx. gelidus, in Sri Lanka. Med Vet Entomol 14(4):430–436

    Article  CAS  PubMed  Google Scholar 

  • Khatun T, Chatterjee S (2017) Emergence of West Nile virus in West Bengal, India: a new report. Trans R Soc Trop Med Hyg 111(4):178–184

    Article  PubMed  Google Scholar 

  • Kilpatrick AM, Randolph SE (2012) Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380(9857):1946–1955

    Article  PubMed  PubMed Central  Google Scholar 

  • Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9(3):311–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi E, Yamaoka M, Kurane I, Mason PW (2000) Japanese encephalitis DNA vaccine candidates expressing premembrane and envelope genes induce virus-specific memory B cells and long-lasting antibodies in swine. Virology 268(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Konishi E, Shoda M, Kondo T (2006) Analysis of yearly changes in levels of antibodies to Japanese encephalitis virus nonstructural 1 protein in racehorses in central Japan shows high levels of natural virus activity still exist. Vaccine 24(4):516–524

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Sulochana P, Nirmala G, Haridattatreya M, Satchidanandam V (2004) Conserved amino acids 193-324 of non-structural protein 3 are a dominant source of peptide determinants for CD4+ and CD8+ T cells in a healthy Japanese encephalitis virus-endemic cohort. J Gen Virol 85(Pt 5):1131–1143

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Chitti SV, Kant R, Saxena SK (2016) Insights into the immunopathogenesis during Japanese encephalitis virus infection. J Immune Serum Biol 3(1):1–4

    CAS  Google Scholar 

  • Kumar K, Arshad SS, Selvarajah GT, Abu J, Toung OP, Abba Y, Bande F, Yasmin AR, Sharma R, Ong BL, Rasid AA, Hashim N, Peli A, Heshini EP, Shah AKMK (2018) Prevalence and risk factors of Japanese encephalitis virus (JEV) in livestock and companion animal in high-risk areas in Malaysia. Trop Anim Health Prod 50(4):741–752

    Article  PubMed  Google Scholar 

  • Kuno G, Chang GJ, Tsuchiya KR, Karabatsos N, Cropp CB (1998) Phylogeny of the genus Flavivirus. J Virol 72(1):73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lannes N, Summerfield A, Filgueira L (2017) Regulation of inflammation in Japanese encephalitis. J Neuroinflammation 14(1):158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larena M, Regner M, Lee E, Lobigs M (2011) Pivotal role of antibody and subsidiary contribution of CD8+ T cells to recovery from infection in a murine model of Japanese encephalitis. J Virol 85(11):5446–5455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larena M, Regner M, Lobigs M (2013) Cytolytic effector pathways and IFN-γ help protect against Japanese encephalitis. Eur J Immunol 43(7):1789–1798

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Counor D, Lu P, Duong V, Yu Y, Deubel V (2012) Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model. Virol J 9:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Phoo WW, Luo D (2014) Functional interplay among the flavivirus NS3 protease, helicase, and cofactors. Virol Sin 29(2):74–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XD, Deng CL, Ye HQ, Zhang HL, Zhang QY, Chen DD, Zhang PT, Shi PY, Yuan ZM, Zhang B (2016) Transmembrane domains of NS2B contribute to both viral RNA replication and particle formation in Japanese encephalitis virus. J Virol 90(12):5735–5749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CL, Chang HL, Lin CY, Chen KT (2017) Seasonal patterns of Japanese encephalitis and associated meteorological factors in Taiwan. Int J Environ Res Public Health 14(11):E1317

    Article  PubMed  Google Scholar 

  • Litzba N, Klade CS, Lederer S, Niedrig M (2010) Evaluation of serological diagnostic test systems assessing the immune response to Japanese encephalitis vaccination. PLoS Negl Trop Dis 4(11):e883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu WJ, Wang XJ, Clark DC, Lobigs M, Hall RA, Khromykh AA (2006) A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80(5):2396–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord JS, Gurley ES, Pulliam JR (2015) Rethinking Japanese encephalitis virus transmission: a framework for implicating host and vector species. PLoS Negl Trop Dis 9(12):e0004074

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo D, Ying H, Yao R, Song J, Wang Z (1995) Socio-economic status and micro-environmental factors in relation to the risk of Japanese encephalitis: a case-control study. Southeast Asian J Trop Med Public Health 26(2):276–279

    PubMed  Google Scholar 

  • Mansfield KL, Hernández-Triana LM, Banyard AC, Fooks AR, Johnson N (2017) Japanese encephalitis virus infection, diagnosis and control in domestic animals. Vet Microbiol 201:85–92

    Article  PubMed  Google Scholar 

  • Miller S, Krijnse-Locker J (2008) Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol 6(5):363–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Muller DA, Young PR (2013) The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res 98(2):192–208

    Article  CAS  PubMed  Google Scholar 

  • Murali-Krishna K, Ravi V, Manjunath R (1996) Protection of adult but not newborn mice against lethal intracerebral challenge with Japanese encephalitis virus by adoptively transferred virus-specific cytotoxic T lymphocytes: requirement for L3T4+ T cells. J Gen Virol 77(Pt 4):705–714

    Article  CAS  PubMed  Google Scholar 

  • Murray CL, Jones CT, Rice CM (2008) Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6(9):699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nah JJ, Yang DK, Kim HH, Song JY (2015) The present and future of veterinary vaccines for Japanese encephalitis in Korea. Clin Exp Vaccine Res 4(2):130–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R (2018) Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 16(3):125–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nour AM, Li Y, Wolenski J, Modis Y (2013) Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. PLoS Pathog 9(9):e1003585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH (2005) Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437(7059):764–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OIE (2012) Manual of diagnostic tests and vaccines for terrestrial animals, 7th edn. World Health Organization for Animal Health (OIE), Paris

    Google Scholar 

  • Oliveira ARS, Cohnstaedt LW, Strathe E, Hernández LE, McVey DS, Piaggio J, Cernicchiaro N (2017) Meta-analyses of the proportion of Japanese encephalitis virus infection in vectors and vertebrate hosts. Parasit Vectors 10(1):418

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul D, Bartenschlager R (2015) Flaviviridae replication organelles: Oh, what a tangled web we weave. Annu Rev Virol 2(1):289–310

    Article  CAS  PubMed  Google Scholar 

  • Paz S, Albersheim I (2008) Influence of warming tendency on Culex pipiens population abundance and on the probability of West Nile fever outbreaks (Israeli Case Study: 2001–2005). Ecohealth 5(1):40–48

    Article  PubMed  Google Scholar 

  • Pérez-Ramírez E, Llorente F, Jiménez-Clavero MÁ (2014) Experimental infections of wild birds with West Nile virus. Viruses 6(2):752–781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philip Samuel P, Arunachalam N, Hiriyan J, Tyagi BK (2008) Host feeding pattern of Japanese encephalitis virus vector mosquitoes (Diptera: Culicidae) from Kuttanadu, Kerala, India. J Med Entomol 45(5):927–932

    Article  CAS  PubMed  Google Scholar 

  • Pierson TC, Fremont DH, Kuhn RJ, Diamond MS (2008) Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development. Cell Host Microbe 4(3):229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386

    Article  CAS  PubMed  Google Scholar 

  • Poccia F, Agrati C, Martini F, Capobianchi MR, Wallace M, Malkovsky M (2005) Antiviral reactivities of gammadelta T cells. Microbes Infect 7(3):518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh D, Muniaraj M, Samuel PP, Thenmozhi V, Venkatesh A, Nagaraj J, Tyagi BK (2015) Seasonal abundance & role of predominant Japanese encephalitis vectors Culex tritaeniorhynchus & Cx. gelidus Theobald in Cuddalore district, Tamil Nadu. Indian J Med Res 142(Suppl):S23–S29

    PubMed  PubMed Central  Google Scholar 

  • Ricklin ME, García-Nicolás O, Brechbühl D, Python S, Zumkehr B, Nougairede A, Charrel RN, Posthaus H, Oevermann A, Summerfield A (2016a) Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nat Commun 7:10832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklin ME, Garcìa-Nicolàs O, Brechbühl D, Python S, Zumkehr B, Posthaus H, Oevermann A, Summerfield A (2016b) Japanese encephalitis virus tropism in experimentally infected pigs. Vet Res 47:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosen L, Lien JC, Shroyer DA, Baker RH, Lu LC (1989) Experimental vertical transmission of Japanese encephalitis virus by Culex tritaeniorhynchus and other mosquitoes. Am J Trop Med Hyg 40(5):548–556

    Article  CAS  PubMed  Google Scholar 

  • Samuel MA, Diamond MS (2006) Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80(19):9349–9360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel MA, Wang H, Siddharthan V, Morrey JD, Diamond MS (2007) Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci U S A 104(43):17140–17145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardelis MR, Turell MJ, Dohm DJ, O’Guinn ML (2001) Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7(6):1018–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuh AJ, Ward MJ, Brown AJ, Barrett AD (2013a) Phylogeography of Japanese encephalitis virus: genotype is associated with climate. PLoS Negl Trop Dis 7(8):e2411

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuh AJ, Guzman H, Tesh RB, Barrett AD (2013b) Genetic diversity of Japanese encephalitis virus isolates obtained from the Indonesian archipelago between 1974 and 1987. Vector Borne Zoonotic Dis 13(7):479–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuh AJ, Ward MJ, Leigh Brown AJ, Barrett AD (2014) Dynamics of the emergence and establishment of a newly dominant genotype of Japanese encephalitis virus throughout Asia. J Virol 88(8):4522–4532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi G, Suzuki T (2018) Molecular basis of encapsidation of hepatitis C virus genome. Front Microbiol 9:396

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff S, Pletnev A, Rico-Hesse R, Smith DB, Stapleton JT, ICTV Report Consortium (2017) ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98(1):2–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smithburn KC, Hughes TP, Burke AW, Paul JH (1940) A neurotropic virus isolated from the blood of a native of Uganda1. Am J Trop Med Hyg 1(4):471–492

    Article  Google Scholar 

  • Solomon T (2004) Flavivirus encephalitis. N Engl J Med 351(4):370–378

    Article  CAS  PubMed  Google Scholar 

  • Solomon T, Ni H, Beasley DW, Ekkelenkamp M, Cardosa MJ, Barrett AD (2003) Origin and evolution of Japanese encephalitis virus in Southeast Asia. J Virol 77(5):3091–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su CL, Yang CF, Teng HJ, Lu LC, Lin C, Tsai KH, Chen YY, Chen LY, Chang SF, Shu PY (2014) Molecular epidemiology of Japanese encephalitis virus in mosquitoes in Taiwan during 2005–2012. PLoS Negl Trop Dis 8(10):e3122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian HY, Bi P, Cazelles B, Zhou S, Huang SQ, Yang J, Pei Y, Wu XX, Fu SH, Tong SL, Wang HY, Xu B (2015) How environmental conditions impact mosquito ecology and Japanese encephalitis: an eco-epidemiological approach. Environ Int 79:17–24

    Article  PubMed  Google Scholar 

  • Turell MJ, Sardelis MR, Dohm DJ, O’Guinn ML (2001) Potential North American vectors of West Nile virus. Ann N Y Acad Sci 951:317–324

    Article  CAS  PubMed  Google Scholar 

  • Turtle L, Bali T, Buxton G, Chib S, Chan S, Soni M, Hussain M, Isenman H, Fadnis P, Venkataswamy MM, Satishkumar V, Lewthwaite P, Kurioka A, Krishna S, Shankar MV, Ahmed R, Begum A, Ravi V, Desai A, Yoksan S, Fernandez S, Willberg CB, Kloverpris HN, Conlon C, Klenerman P, Satchidanandam V, Solomon T (2016) Human T cell responses to Japanese encephalitis virus in health and disease. J Exp Med 213(7):1331–1352

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Hurk AF, Ritchie SA, Mackenzie JS (2009) Ecology and geographical expansion of Japanese encephalitis virus. Annu Rev Entomol 54:17–35

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liang G (2015) Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag 11:435–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10(12):1366–1373

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Hu K, Luo S, Zhang M, Deng X, Li C, Jin W, Hu B, He S, Li M, Du T, Xiao G, Zhang B, Liu Y, Hu Q (2016) DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein. Virology 488:108–119

    Article  CAS  PubMed  Google Scholar 

  • Ward MP, Schuermann JA, Highfield LD, Murray KO (2006) Characteristics of an outbreak of West Nile virus encephalomyelitis in a previously uninfected population of horses. Vet Microbiol 118(3–4):255–259

    Article  CAS  PubMed  Google Scholar 

  • WHA (2016) Fact sheet: EXOTIC-Japanese encephalitis. https://wildlifehealthaustralia.com.au/Portals/0/Documents/FactSheets/Exotic/EXOTIC%20-%20Japanese%20Encephalitis%20Mar%202016%20(2.0).pdf

  • WHO (2019) Japanese encephalitis. Fact sheet. http://www.who.int/mediacentre/factsheets/fs386/en/. Accessed 6-3-2018

  • Zhang B, Chan YK, Lu B, Diamond MS, Klein RS (2008) CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. J Immunol 180(4):2641–2649

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Rehman MU, Li K, Luo H, Lan Y, Nabi F, Zhang L, Iqbal MK, Zhu S, Javed MT, Chamba Y, Li JK (2017) Epidemiologic survey of Japanese encephalitis virus infection, Tibet, China, 2015. Emerg Infect Dis 23(6):1023–1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou G, Chen YL, Dong H, Lim CC, Yap LJ, Yau YH, Shochat SG, Lescar J, Shi PY (2011) Functional analysis of two cavities in flavivirus NS5 polymerase. J Biol Chem 286(16):14362–14372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the authors of the manuscript thank and acknowledge their respective universities and institutes.

Conflict of interest: There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra K. Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, S.K., Kumar, S., Haikerwal, A. (2020). Animal Flaviviruses. In: Malik, Y., Singh, R., Yadav, M. (eds) Emerging and Transboundary Animal Viruses . Livestock Diseases and Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-0402-0_7

Download citation

Publish with us

Policies and ethics