Skip to main content

Classical Swine Fever Virus

  • Chapter
  • First Online:

Part of the book series: Livestock Diseases and Management ((LDM))

Abstract

Classical swine fever virus (CSFV), belonging to the genus Pestivirus of the family Flaviviridae and species Pestivirus C, is the aetiological agent of a disease called classical swine fever (CSF) or hog cholera, which is a devastating transboundary disease of pigs across the globe. Besides domestic pigs, the disease has been reported from wild pigs, and pygmy hog (Porcula salvania) and wild boar are also reservoir hosts. The CSFV size ranges from 40 to 60 nm, and the genome of the virus consists of a single-stranded, positive-sense RNA. Based on sequence analysis, 3 genotypes and 14 subgenotypes of CSFV have so far been reported, and a shift in the historical genotypes 1–2 has been observed in the recent past. Although many countries are now free from CSF, the disease is still widely prevalent in most of the South American, Asian and South East Asian countries possibly due to high pig population, low vaccination coverage and poor biosecurity. The virus spreads in different ways, and after entry into the susceptible hosts produces various clinical manifestations. The peracute form of CSF has disappeared, while acute form occurs commonly in younger animals and chronic form is more common with reports of absence of clear symptoms in adult animals. Confirmatory diagnosis of the disease is to be made at the early stage to prevent its spread and control of CSF is important to sustain pig production to meet the growing demand of pork in different parts of the world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahuja A, Bhattacharjee U, Chakraborty AK et al (2015) Complete genome sequence of classical swine fever virus subgenogroup 2.1 from Assam, India. Genome Announc 3:e01437-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Armengol E, Wiesmuller KH, Wienhold D et al (2002) Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J Gen Virol 83:551–560

    Article  PubMed  Google Scholar 

  • Barman NN, Bora DP, Tiwari AK, Kataria RS et al (2012) Classical swine fever in the pygmy hog. Rev Sci Tech Off Int Epiz 31:919–930

    Article  CAS  Google Scholar 

  • Barman NN, Bora DP, Khatoon E et al (2014) Classical swine fever in wild hog: report of its prevalence in northeast India. Transbound Emerg Dis 63:540–547

    Article  PubMed  CAS  Google Scholar 

  • Bartak P, Greiser-Wilke I (2000) Genetic typing of classical swine fever virus isolates from the territory of the Czech Republic. Vet Microbiol 77:59–70

    Article  CAS  PubMed  Google Scholar 

  • Becher P, Schmeiser S, Oguzoglu TC et al (2012) Complete genome sequence of a novel pestivirus from sheep. J Virol 86:11412. https://doi.org/10.1128/JVI.01994-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beer M, Goller KV, Staubach C et al (2015) Genetic variability and distribution of classical swine fever virus. Anim Health Res Rev 16:33–39

    Article  PubMed  Google Scholar 

  • Bouma A, Stegeman JA, Engel B et al (2001) Evaluation of diagnostic tests for the detection of classical swine fever in the field without a gold standard. J Vet Diagn Investig 13:383–388

    Article  CAS  Google Scholar 

  • Cha SH, Choi EJ, Park JH et al (2007) Phylogenetic characterization of classical swine fever viruses isolated in Korea between 1988 and 2003. Virus Res 126:256–261

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Fan X-Z, Wang Q et al (2010) A novel RT-LAMP assay for rapid and simple detection of classical swine fever virus. Virol Sin 25:59–64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen J, He WR, Shen L et al (2015) The laminin receptor is a cellular attachment receptor for classical swine fever virus. J Virol 89:4894–4906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi C, Hwang KK, Chae C (2004) Classical swine fever virus induces tumor necrosis factor-alpha and lymphocyte apoptosis. Arch Virol 149:875–889

    Article  CAS  PubMed  Google Scholar 

  • Chopade NA, Deshmukh VV, Rautmare SS et al (2010) Detection of classical swine fever virus from frozen tissue by RT-PCR. Anim Sci Rep 4:56–59

    Google Scholar 

  • Clavijo A, Zhou EM, Vydelingum S et al (1998) Development and evaluation of a novel antigen capture assay for the detection of classical swine fever virus antigen. Vet Microbiol 60:155–168

    Article  CAS  PubMed  Google Scholar 

  • Clavijo A, Lin M, Riva J et al (2001) Application of competitive enzyme-linked immunosorbent assay for the serologic diagnosis of classical swine fever virus infection. J Vet Diagn Investig 13:357–360

    Article  CAS  Google Scholar 

  • Conlan JV, Khounsy S, Blacksell SD et al (2009) Development and evaluation of a rapid immunomagnetic bead assay for the detection of classical swine fever virus antigen. Trop Anim Health Prod 41:913–920

    Article  PubMed  Google Scholar 

  • Contassot E, Beer HD, French LE (2012) Interleukin-1, inflammasomes, autoinflammation and the skin. Swiss Med Wkly 142:w1359

    Google Scholar 

  • de Smit AJ, Bouma A, Deekluijver EP et al (2001) Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination. Vet Microbiol 78:307–317

    Article  PubMed  Google Scholar 

  • Depner EKR, Rodriguez OA, Pohlenz O et al (1996) Persistent classical swine fever virus infection in pigs infected after weaning with a virus isolated during the 1995 epidemic in Germany: clinical, virological, serological and pathological findings. Eur J Vet Pathol 2:61–66

    Google Scholar 

  • Dewulf J, Laevens H, Koenen F et al (2004) Efficacy of E2-sub-unit marker and C-strain vaccines in reducing horizontal transmission of classical swine fever virus in weaner pigs. Prev Vet Med 65:121–133

    Article  CAS  PubMed  Google Scholar 

  • Dong XN, Chen YH (2005) Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2. Vaccine 24:1906–1913

    Article  PubMed  CAS  Google Scholar 

  • Downing DR, Carbrey EA, Stewart WC (1977) Preliminary findings on a thermal inactivation curve for Hog Cholera virus. In: Agri. Res. Seminar on Hog Cholera/Classical Swine Fever and African Swine Fever. USDA Veterinary Laboratory, Ames, Iowa

    Google Scholar 

  • Edwards S, Fukusho A, Lefevre PC et al (2000) Classical swine fever: the global situation. Vet Microbiol 73:103–119

    Article  CAS  PubMed  Google Scholar 

  • Everett H, Crooke H, Gurrala R et al (2011) Experimental infection of common warthogs (Phacochoerus africanus) and bushpigs (Potamochoerus larvatus) with classical swine fever virus. I: susceptibility and transmission. Transbound Emerg Dis 58:128–134

    Article  CAS  PubMed  Google Scholar 

  • FAO (2010) Good practices for biosecurity in the pig sector—issues and options in developing and transition countries. FAO animal production and health paper 169, Rome

    Google Scholar 

  • Fernandez-Sainz I, Holinka LG, Gavrilov BK et al (2009) Alteration of the N-inked glycosylation condition in E1 glycoprotein of classical swine fever virus strain Brescia alters virulence in swine. Virology 386:210–216

    Article  CAS  PubMed  Google Scholar 

  • Floegel G, Wehrend A, Depner KR et al (2000) Detection of classical swine fever virus in semen of infected boars. Vet Microbiol 77:109–116

    Article  CAS  PubMed  Google Scholar 

  • Freitas TR, Caldas LA, Rebello MA (1998) Prostaglandin A1 inhibits replication of classical swine fever virus. Mem Inst Oswaldo Cruz 93:815–818

    Article  CAS  PubMed  Google Scholar 

  • Gawolek GP, Chaubey B, Szewczyk B et al (2017) Novel thioglycosyl analogs of glycosyltransferase substrates as antiviral compounds against classical swine fever virus and Hepatitis C virus. Eur J Med Chem 137:247–262

    Article  CAS  Google Scholar 

  • Gisler ACF, Nardi NB, Nonnig RB et al (1999) Classical swine fever virus in plasma and peripheral blood mononuclear cells of acutely infected swine. J Vet Med B 46:585–593

    Article  CAS  Google Scholar 

  • Gladue DP, Holinka LG, Largo E et al (2012) Classical swine fever virus p7 protein is a viroporin involved in virulence in swine. J Virol 86:6778–6791. https://doi.org/10.1128/JVI.00560-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Villamandos JC, Salguero FJ, Ruiz-Villamor E et al (2003) Classical swine fever: pathology of bone marrow. Vet Pathol 40:157–163. https://doi.org/10.1354/vp.40-2-157

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Wu J, Lu Z, Zhang L et al (2016) Genetic diversity of subgenotype 2.1 isolates of classical swine fever virus. Infect Genet Evol 41:218–226

    Article  CAS  PubMed  Google Scholar 

  • Greiser-Wilke I, Moennig V (2004) Vaccination against classical swine fever virus: limitations and new strategies. Anim Health Res Rev 5:223–226

    Article  PubMed  Google Scholar 

  • Greiser-Wilke I, Dreier S, Haas L et al (2006) Genetic typing of classical swine fever viruses—a review. Dtsch Tierarztl Wochenschr 113:134–138

    CAS  PubMed  Google Scholar 

  • Gupta PK, Saini M, Dahiya SS et al (2011) Molecular characterization of lapinized classical Swine Fever vaccine strain by full-length genome sequencing and analysis. Anim Biotechnol 22:111–117

    Article  PubMed  Google Scholar 

  • Hammond JM, Jansen ES, Morrissy CJ et al (2001) A prime-boost vaccination strategy using naked DNA followed by recombinant porcine adenovirus protects pigs from classical swine fever. Vet Microbiol 80:101–119

    Article  CAS  PubMed  Google Scholar 

  • Handel K, Kehler H, Hils K et al (2004) Comparison of reverse transcriptase–polymerase chain reaction, virus isolation, and immunoperoxidase assays for detecting pigs infected with low, moderate, and high virulent strain of classical swine fever virus. J Vet Diagn Investig 16:132–138

    Article  Google Scholar 

  • Hanson RP (1957) Origin of hog cholera. J Am Vet Med Assoc 131:211–218

    CAS  PubMed  Google Scholar 

  • Huang YL, Deng MC, Wang FI et al (2014) The challenges of classical swine fever control; modified live and E2 subunit vaccines. Virus Res 179:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hulst MM, van Gennip HGP, Moormann RJM (2000) Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparin sulfate due to a single amino acid change in envelope protein E-rns. J Virol 74:9553–9561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaden V, Lange E, Fischer U et al (2000) Oral immunisation of wild boar against classical swine fever: evaluation of the first field study in Germany. Vet Microbiol 73:239–252

    Article  CAS  PubMed  Google Scholar 

  • Kaden V, Steyer H, Schnabel J et al (2005) Classical swine fever (CSF) in wild boar: the role of the transplacental infection in the perpetuation of CSF. J Vet Med B Infect Dis Vet Public Health 52:161–164

    Article  CAS  PubMed  Google Scholar 

  • Kolupaeva VG, Pestova TV, Hellen CU (2000) Ribosomal binding to the internal ribosomal entry site of classical swine fever virus. RNA 6:1791–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konig M, Lengsfeld T, Pauly T et al (1995) Classical swine fever virus: Independent induction of protective immunity by two structural glycoproteins. J Virol 69:6479–6486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Rajak KK, Chandra T et al (2014) Whole-genome sequence of a classical swine fever virus isolated from the Uttarakhand State of India. Genome A 2:e00371-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon T, Yoon SH, Kim KW et al (2015) Time-calibrated phylogenomics of the classical swine fever viruses: genome-wide Bayesian coalescent. PLoS 10:e0121578. https://doi.org/10.1371/journal.pone.0121578

    Article  CAS  Google Scholar 

  • Lackner T, Thiel HJ, Tautz N (2006) Dissection of a viral autoprotease elucidates a function of a cellular chaperone in proteolysis. Proc Natl Acad Sci USA 103:1510–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laeven AH, Koenen OF, Deluyker EH et al (1999) Experimental infection of slaughter pigs with classical swine fever virus: transmission of the virus, course of the disease and antibody response. Vet Rec 145:243–248

    Article  Google Scholar 

  • Langedijk JPM, Middel WG, Meloen RH et al (2001) Enzyme-linked immunosorbent assay using a virus type specific peptide based on a subdomain of envelope protein E(rns) for serologic diagnosis of pestivirus infections in swine. J Clin Microbiol 39:906–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li W, Shi X et al (2012) Development of an immunochromatographic strip for rapid detection of antibodies against classical swine fever virus. J Virol Meth 180:32–37

    Article  CAS  Google Scholar 

  • Lin M, Lin F, Mallory M, Clavijo A (2000) Deletions of structural glycoprotein E2 of classical swine fever virus strain Alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J Virol 74:11619–11625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M, Trottier E, Mallory M (2005) Enzyme-linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection. Clin Diagn Lab Immunol 12:877–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JJ, Wong ML, Chang TJ (1998) The recombinant nucleocapsid protein of classical swine fever virus can act as a transcriptional regulator. Virus Res 53:75–80

    Article  CAS  PubMed  Google Scholar 

  • Lowings P, Ibata G, Needham J et al (1996) Classical swine fever diversity and evolution. J Gen Virol 77:1311–1321

    Article  CAS  PubMed  Google Scholar 

  • McKissick GE, Gustafson DP (1967) In vivo demonstration of lability of hog cholera virus to lipolytic agents. Am J Vet Res 28:909–914

    CAS  PubMed  Google Scholar 

  • Meyer D (2011) Epitope mapping of the structural protein Erns of classical swine fever virus. Thesis submitted in partial fulfilment of the requirement for the degree Doctor Rerurm Naturatium. Institute of Virology, Hannover

    Google Scholar 

  • Meyers G, Thiel HJ (1996) Molecular characterization of pestiviruses. Adv Virus Res 47:53–118

    Article  CAS  PubMed  Google Scholar 

  • Mittelholzer C, Moser C, Tratschin J et al (2000) Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol 74:293–308

    Article  CAS  Google Scholar 

  • Moennig V, Becher P (2015) Pestivirus control programs: how far have we come and where are we going? Anim Health Res Rev 16:83–87

    Article  PubMed  Google Scholar 

  • Moennig V, Greiser-Wilke I (2008) Classical swine fever virus. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology. Elsevier, Amsterdam, pp 525–532

    Chapter  Google Scholar 

  • Moennig V, Plagemann PGW (1992) The pestiviruses. Adv Virus Res 41:53–98

    Article  CAS  PubMed  Google Scholar 

  • Moennig V, Floegel NG, Greiser-Wilke I (2003) Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J 165:11–20

    Article  CAS  PubMed  Google Scholar 

  • Moormann RJ, Bouma A, Kramps JA et al (2000) Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol 73:209–219

    Article  CAS  PubMed  Google Scholar 

  • Moulin HR, Seuberlich T, Bauhofer O et al (2007) Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: Essential features for infectious particle formation. Virology 365:376–389

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan K, Saikumar G (2012) Fluorescent in-situ hybridization technique for the detection and localization of classical swine fever virus in infected tissues. Veterinarski Arhiv 82:495–504

    CAS  Google Scholar 

  • OIE (2007) Manual of diagnostic tests and vaccines for terrestrial animals. http://www.oie.int/eng/norms/manual/asummary.htm

  • OIE (2018) Terrestrial animal health code, 27th edn. World Organization for animal health, Paris, France

    Google Scholar 

  • Patil SS, Hemadri D, Shankar BP et al (2010) Genetic typing of recent classical swine fever isolates from India. Vet Microbiol 141:367–373

    Article  CAS  PubMed  Google Scholar 

  • Paton DJ, Greiser-Wilke I (2003) Classical swine fever—an update. Res Vet Sci 75:169–178. https://doi.org/10.1016/S0034-5288(03)00076-6

    Article  CAS  PubMed  Google Scholar 

  • Paton DJ, McGoldrick A, Greiser-Wilke I et al (2000a) Genetic typing of classical swine fever virus. Vet Microbiol 73:137–157

    Article  CAS  PubMed  Google Scholar 

  • Paton DJ, McGoldrick A, Belak S (2000b) Classical swine fever virus: a ring test to evaluate RT-PCR detection methods. Vet Microbiol 73:159–174

    Article  CAS  PubMed  Google Scholar 

  • Penrith ML, Vosloo W, Mather C (2011) Classical swine fever (hog cholera): Review of aspects relevant to control. Transbound Emerg Dis 58(3):187–196

    Article  PubMed  Google Scholar 

  • Postel A, Schmeiser S, Bernau J et al (2012) Improved strategy for phylogenetic analysis of classical swine fever virus based on full-length E2 encoding sequences. Vet Res 43:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postel A, Schmeiser S, Perera CL et al (2013) Classical swine fever virus isolates from Cuba a new subgenotype 1.4. Vet. Microbiol 161:334–338

    Google Scholar 

  • Postel A, Schmeiser S, Oguzoglu TC et al (2015) Close relationship of ruminant pestiviruses and classical swine fever virus. Emerg Infect Dis 21(4):668–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postel A, Busch SA, Petrov A et al (2017) Epidemiology, diagnosis and control of classical swine fever: recent developments and future challenges. Transbound Emerg Dis 64:1–14

    Article  Google Scholar 

  • Postel A, Nishi T, Kameyama K et al (2019) Re-emergence of classical swine fever, Japan, 2018. Emerg Infect Dis 25(6):1228–1231. https://doi.org/10.3201/eid2506.181578

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi Y, Liu LC, Zhang BQ et al (2008) Characterization of antibody responses against a neutralizing epitope on the glycoprotein E2 of classical swine fever virus. Arch Virol 153:1593–1598

    Article  CAS  PubMed  Google Scholar 

  • Raut S, Dattatraya RK, Kishore KR et al (2015) Detection of classical swine fever virus antigen and nucleic acid on blood of experimentally infected piglets. Adv Anim Vet Sci 3:1–6

    Article  Google Scholar 

  • Rehman S (1987) Virucidal effect of the heat treatment of waste food for swine. Tierarztliche Umschau 42(11):892–896

    Google Scholar 

  • Reimann I, Depner K, Trapp S et al (2004) An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus. Virology 322:143

    Article  CAS  PubMed  Google Scholar 

  • Renson P, Dimna ML, Keranflech A et al (2013) CP7-E2alf oral vaccination confers partial protection against early classical swine fever virus challenge and interferes with pathogeny-related cytokine responses. Vet Res 44:9. https://doi.org/10.1186/1297-9716-44-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rios L, Nunez JI, de Arce HD et al (2018) Revisiting the genetic diversity of classical swine fever virus: a proposal for new genotyping and sub genotyping schemes of classification. Transbound Emerg Dis 65(4):963–971

    Article  PubMed  Google Scholar 

  • Risager PC, Fahnøe U, Gullberg M et al (2013) Analysis of classical swine fever virus RNA replication determinants using replicons. J Gen Virol 94:1739–1748

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Staubach C, Blome S et al (2015) Controlling of CSFV in European wild boar using oral vaccination: a review. Front Microbiol 6:1–11. https://doi.org/10.3389/fmicb.2015.01141

    Article  Google Scholar 

  • Roychoudhury P, Sarma DK, Rajkhowa S et al (2014) Predominance of genotype 1.1 and emergence of genotype 2.2 classical swine fever viruses in north-eastern region of India. Transbound Emerg Dis 61(Suppl. 1):69–77

    Article  PubMed  Google Scholar 

  • Sanchez-Cordon PJ, Nunez A, Salguero FJ (2005) Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol 42:477–488

    Article  CAS  PubMed  Google Scholar 

  • Sarma DK, Meshram DJ (2008) Comparison of sandwich and dot ELISA for detection of CSF virus antigen in pigs. Ind Vet J 85:915–918

    Google Scholar 

  • Sarma DK, Sarma PC (1995) ELISA for detection of hog cholera virus antigen. Ind J Anim Sci 65:650–651

    Google Scholar 

  • Sarma DK, Krishna L, Misri J (2008a) Classical swine fever in pigs and its status in India: a review. Ind J Anim Sci 78:1311–1317

    Google Scholar 

  • Sarma DK, Mishra N, Rajukumar K et al (2008b) Isolation and characterization of classical swine fever virus from pigs in Assam. Ind J Anim Sci 78:37–39

    Google Scholar 

  • Sarma DK, Mishra N, Vilcek S et al (2011) Phylogenetic analysis of recent classical swine fever virus (CSFV) isolates from Assam, India. Comp Immunol Microbiol Infect Dis 34:11–15

    Article  PubMed  Google Scholar 

  • Sato M, Mikami O, Kobayashi M et al (2000) Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus. Vet Microbiol 75:1–9

    Article  CAS  PubMed  Google Scholar 

  • Shi BJ, Liu CC, Zhou J et al (2016) Entry of classical swine fever virus into PK-15 cells via a pH-, dynamin-, and cholesterol-dependent, clathrin-mediated endocytic pathway that requires Rab5 and Rab7. J Virol 90:9194–9208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva MN, Silva DM, Leite AS et al (2017) Identification and genetic characterization of classical swine fever virus isolates in Brazil: a new subgenotype. Archiv Virol 162:817–822

    Article  CAS  Google Scholar 

  • Singh VK, Kumar GS, Paliwal OP (2005) Detection of classical swine fever virus in archival formalin-fixed tissues by reverse transcription-polymerase chain reaction. Res Vet Sci 79:81–84

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Bardhan D, Verma MR et al (2016) Incidence of classical swine fever in pigs in India and its economic evaluation with a simple mathematical model. Anim Sci Rep 10:3–9

    Google Scholar 

  • Smith DB, Meyers G, Bukh J et al (2017) Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J Gen Virol 98:2106–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summerfield A, Ruggli N (2015) Immune responses against classical swine fever virus: between ignorance and lunacy. Front Vet Sci 2:1–9. https://doi.org/10.3389/fvets.2015.00010

    Article  Google Scholar 

  • Summerfield A, Alves M, Ruggli N et al (2006) High IFN-alpha responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine fever. J Interf Cytokine Res 26:248–255

    Article  CAS  Google Scholar 

  • Suradhat S, Damrongwatanapokin S (2003) The influence of maternal immunity on efficacy of a classical swine fever vaccine against classical swine fever virus, genogroup 2.2, infection. Vet Microbiol 92:187–194

    Article  CAS  PubMed  Google Scholar 

  • Tautz N, Elbers K, Stoll D, Meyers G, Thiel HJ (1997) Serine protease of pestiviruses: determination of cleavage sites. J Virol 71:5415–5422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teifke JP, Lange E, Klopfleisch R et al (2005) Nictitating membrane as a potentially useful postmortem diagnostic specimen for classical swine fever. J Vet Diagn Investig 17:341–345

    Article  Google Scholar 

  • Terpstra C, Bloemraad M, Gielkens AL (1984) The neutralizing peroxidase- linked assay for detection of antibody against swine fever virus. Vet Microbiol 9:113–120

    Article  CAS  PubMed  Google Scholar 

  • Terpstra C (1991) Hog cholera: an update of present knowledge. Brit Vet J 147:397–406

    Article  CAS  Google Scholar 

  • Töpfer A, Höper D, Blome S et al (2013) Sequencing approach to analyze the role of quasispecies for classical swine fever. Virology 438:14–19

    Article  PubMed  CAS  Google Scholar 

  • Trautwein G, Leiss B (1988) Pathology and pathogenesis of the disease, classical swine fever and related infections. Martinus Nijhoff Publishing, Boston, MA, pp 27–54

    Google Scholar 

  • Tyborowska J, Zdunek E, Szewczyk B (2007) Effect of N-glycosylation inhibition on the synthesis and processing of classical swine fever virus glycoproteins. Acta Biochim Pol 54:813–819

    Article  CAS  PubMed  Google Scholar 

  • van Gennip HGP, van Rijn PA, Widjojoatmodjo MN et al (2000) Chimeric classical swine fever viruses containing envelope protein E-RNS or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine 19:447–459

    Article  PubMed  Google Scholar 

  • van Gennip HGP, Bouma A, van Rijn PA et al (2002) Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV. Vaccine 20:1544–1556

    Article  PubMed  Google Scholar 

  • Van Oirschot VJT (2004) Hog cholera. In: JAW C, Tustin RC (eds) Infectious diseases of livestock, 2nd edn. Oxford University Press, Oxford, pp 975–986

    Google Scholar 

  • Weesendorp E, Stegeman A, Willie LA et al (2008) Survival of classical swine fever virus at various temperatures in faeces and urine derived from experimentally infected pigs. Vet Microbiol 132:249–259

    Article  CAS  PubMed  Google Scholar 

  • Wen G, Yang J, Luo Q et al (2010) A one-step real-time reverse transcription-polymerase chain reaction detection of classical swine fever virus using a minor groove binding probe. Vet Res Commun 34:359–369

    Article  PubMed  Google Scholar 

  • Wengler G, Bradley DW, Collett MS et al (1995) Family Flaviviridae. Virus taxonomy. In: Murphy FA, Fauquet CM et al (eds) Sixth report of the international committee on taxonomy of viruses. Springer, New York, pp 415–427

    Google Scholar 

  • Wise GH (1986) Eradication of hog cholera from the United States. In: Woods GT (ed) Practices in veterinary public health and preventive medicine in the United States. Iowa State University Press, Ames, IA, pp 199–223

    Google Scholar 

  • Wongsawat K, Dharakul T, Narat P et al (2011) Detection of nucleic acid of classical swine fever virus by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Sci Res 3:447–452

    CAS  Google Scholar 

  • Xu X, Guo H, Xiao C et al (2008) In vitro inhibition of classical swine fever virus replication by siRNAs targeting Npro and NS5B genes. Antivir Res 78:188–193

    Article  CAS  PubMed  Google Scholar 

  • Yoo SJ, Kwon T, Kang K et al (2018) Genetic evolution of classical swine fever virus under immune environments conditioned by genotype 1-based modified live virus vaccine. Transbound Emerg Dis 65:735–745. https://doi.org/10.1111/tbed.12798

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Huang Y, Zheng H et al (2007) Study on colloidal gold strip in detecting classical swine fever virus. Fujian J Anim Hus Vet Med 6:13

    Google Scholar 

  • Zhao JJ, Cheng D, Li N et al (2008) Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of classical swine fever virus. Vet Microbiol 126:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhou YC, Wang Q, Fan XZ et al (2009) The changes of peripheral blood leucocytes subpopulation after challenge with CSFV virulent strain Shimen. Chin J Virol 25:303–308

    CAS  Google Scholar 

Download references

Acknowledgements

All the authors of the manuscript thank and acknowledge their respective universities and institutes.

Conflict of interest: There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarma, D.K. (2020). Classical Swine Fever Virus. In: Malik, Y., Singh, R., Yadav, M. (eds) Emerging and Transboundary Animal Viruses . Livestock Diseases and Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-0402-0_3

Download citation

Publish with us

Policies and ethics