Skip to main content

Green Nanoparticles for Biomedical and Bioengineering Applications

  • Chapter
  • First Online:

Abstract

Green nanotechnology is a recent branch of nanotechnology in consonance with current concerns about sustainability issues using methods and materials that aim to generate eco-friendly nanosystems, with low environmental impact associated with significant economic and social gains. This concept offers opportunities for the use of nontoxic reagents and metabolites of living organisms in routes of green synthesis of nanosystems, including metallic nanoparticles, polymer nanoparticles, liposomes, and emulsions, because these materials enable a wide range of innovative applications, besides, in general, technologically desirable characteristics. Simplicity, scaling-up possibilities, and low cost of production, as well as the enhanced properties, thereby qualifying green nanoparticles as promising candidates for unprecedented applications. Biomedical and bioengineering processes may directly benefit from this emerging nanotechnology field among other areas, such as agriculture and many industrial sectors. This chapter particularly focuses on subjects that were not covered by previous reviews about the area and presents a perspective that aligns high technology and sustainability in the development of nanotechnological products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • A matter of scale. [Editorial] (2016) Nat Nanotechnol 11:733

    Article  CAS  Google Scholar 

  • Abalkhil TA, Alharbi SA, Salmen SH et al (2017) Bactericidal activity of biosynthesized silver nanoparticles against human pathogenic bacteria. Biotechnol Biotechnol Equip 31:411–417

    Article  CAS  Google Scholar 

  • Abdel-Fattah WI, Ali GW (2018) On the anti-cancer activities of silver nanoparticles. J Appl Biotechnol Bioeng 5(1):43–46

    Google Scholar 

  • Abdel-Fattah WI, Eid MM, El-Moez SA et al (2017) Synthesis of biogenic Ag@Pd core-shell nanoparticles having anti-cancer/anti-microbial functions. Life Sci 183:28–36

    Article  CAS  PubMed  Google Scholar 

  • Abdelghany TM, Al-Rajhi AM, Al Abboud MA et al (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. Bionanoscience 8(1):5–16

    Article  Google Scholar 

  • Aceituno VC, Ahn S, Simu SY et al (2016) Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed Pharmacother 84:158–165

    Article  CAS  Google Scholar 

  • Adelere IA, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol Rev 5(6):567–587

    Article  CAS  Google Scholar 

  • Agarwal S, Wendorff JH, Greiner A (2009) Progress in the field of electrospinning for tissue engineering applications. Adv Mater 21:3343–3351

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Sharma AK, Sharma S et al (2018) Biosynthesized composites of Au-Ag nanoparticles using Trapa peel extract induced ROS-mediated p53 independent apoptosis in cancer cells. Drug Chem Toxicol 42(1):1–12

    Google Scholar 

  • Ahmed S, Annu S, Ikram S et al (2016) Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol 161:141–153

    Article  CAS  Google Scholar 

  • Ahn EY, Jin H, Park Y (2019) Green synthesis and biological activities of silver nanoparticles prepared by Carpesium cernuum extract. Arch Pharm Res

    Google Scholar 

  • Alemzadeh E, Dehshahri A, Izadpanah K et al (2018) Plant virus nanoparticles: novel and robust nanocarriers for drug delivery and imaging. Colloid Surf B 167:20–27

    Article  CAS  Google Scholar 

  • Alkubaisi NAO, Aref NMMA, Hendi AA (2015) The polynucleotide confers pathogen or pest resistance. US Patent 9,198,434, 1 Dec 2015

    Google Scholar 

  • Al-Sheddi ES, Farshori NN, Al-Oqail MM et al (2018) Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg Chem Appl 2018:1–13

    Article  CAS  Google Scholar 

  • Andra S, Balu SK, Jeevanandham J et al (2019) Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schm Arch Pharmacol 392(7):755–771

    Article  CAS  Google Scholar 

  • Anwar A, Masri A, Rao K et al (2019) Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep 9(1):1–12

    Article  CAS  Google Scholar 

  • Araujo PW, Brereton RG (1996) Experimental design II. Optim Trends Anal Chem 15(2):63–70

    Article  CAS  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra MR et al (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Article  Google Scholar 

  • Azizi S, Ahmad MB, Namvar F et al (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    Article  CAS  Google Scholar 

  • Babensee JE, McIntire LV, Mikos AG (2000) Growth factor delivery for tissue engineering. Pharm Res 17(5):497–504

    Article  CAS  PubMed  Google Scholar 

  • Baranwal A, Srivastava A, Kumar P et al (2018) Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol 9:1–10

    Article  Google Scholar 

  • Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3–31

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2016) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68

    Article  CAS  Google Scholar 

  • Bonatto CC, Silva LP (2014) Higher temperatures speed up the growth and control the size and optoelectrical properties of silver nanoparticles greenly synthesized by cashew nutshells. Ind Crop Prod 58:46–54

    Article  CAS  Google Scholar 

  • Boonkaew B, Suwanpreuska P, Cuttle L et al (2013) Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci 131(9):1–10

    Google Scholar 

  • Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  • Camargo PC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 121:1–9

    Article  Google Scholar 

  • Chamberlain AM, Cohen SS, Weston SA et al (2019) Relation of cardiovascular events and deaths to low-density lipoprotein cholesterol level among statin-treated patients with atherosclerotic cardiovascular disease. Am J Cardiol 123:1739–1744

    Article  PubMed  PubMed Central  Google Scholar 

  • Chariou PL, Steinmetz NF (2017) Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier. ACS Nano 11(5):4719–4730

    Article  CAS  PubMed  Google Scholar 

  • Choudhary RC, Kumaraswamy RV, Kumari S et al (2017) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  • Christopher JG, Saswati B, Ezilrani P (2015) Optimization of parameters for biosynthesis of silver nanoparticles using leaf extract of Aegle marmelos. Braz Arch Biol Technol 58(5):702–710

    Article  CAS  Google Scholar 

  • Chung IM, Park I, Seung-Hyun K et al (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11(1):1–14

    Article  CAS  Google Scholar 

  • Cruz RM, Peixoto HM, Magalhães RM (2011) Artificial neural networks and efficient optimization techniques for applications in engineering. In: Suzuki K (ed) Artificial neural networks-methodological advances and biomedical applications. InTech, Rijeka, pp 45–68

    Google Scholar 

  • Cyril N, George JB, Joseph L et al (2019) Assessment of antioxidant, antibacterial and anti-proliferative (lung cancer cell line A549) activities of green synthesized silver nanoparticles from Derris trifoliata. Toxicol Res 8(2):297–308

    Article  CAS  Google Scholar 

  • Dakal TC, Kumar A, Majumdar RS et al (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1–17

    Article  Google Scholar 

  • Das RK, Pachapur VL, Lonappan L et al (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2(18):1–21

    CAS  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  • DeMarco PM (2017) Rachel Carson’s environmental ethic – a guide for global systems decision making. J Clean Prod 140(1):127–133

    Article  Google Scholar 

  • Demirdogen RE, Emen FM, Ocakoglu K et al (2018) Green nanotechnology for synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanoparticles for sustained bortezomib release using supercritical CO2 assisted particle formation combined with electrodeposition. Int J Biol Macromol 107(A):436–445

    Article  CAS  PubMed  Google Scholar 

  • Dey A, Yogamoorthy A, Sundarapandian SM (2018) Green synthesis of gold nanoparticles and evaluation of its cytotoxic property against colon cancer cell line. RJLSBPCS 4(6):1–17

    CAS  Google Scholar 

  • Dhand C, Dwivedi N, Loh XJ et al (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv 5:105003–105037

    Article  CAS  Google Scholar 

  • Dhar S, Murawala P, Shiras A et al (2012) Gellan gum capped silver nanoparticle dispersions and hydrogels: cytotoxicity and in vitro diffusion studies. Nanoscale 4:563–567

    Article  CAS  PubMed  Google Scholar 

  • Doria G, Conde J, Veigas B et al (2012) Noble metal nanoparticles for biosensing applications. Sensors 12:1657–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    Article  CAS  PubMed  Google Scholar 

  • Ebrahiminezhad A, Zare-Hoseinabadi A, Sarmah AK et al (2018) Plant-mediated synthesis and applications of iron nanoparticles. Mol Biotechnol 60(2):154–168

    Article  CAS  PubMed  Google Scholar 

  • Elegbede JA, Lateef A, Azeez MA et al (2019) Silver-gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol Prog. https://doi.org/10.1002/btpr.2829

  • Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133

    Article  CAS  PubMed  Google Scholar 

  • El-Moslamy SH (2018) Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent. Sci Rep 8(1):1–22

    Article  CAS  Google Scholar 

  • El-Moslamy SH, Kabeil SSA, Hafez EE (2016) Bioprocess development for Chlorella vulgaris cultivation and biosynthesis of anti-phytopathogens silver nanoparticles. J Nanomater Mol Nanotechnol 5:1

    Article  Google Scholar 

  • El-Moslamy SH, Elkady MF, Rezk AH et al (2017) Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA. F4 and its application against phytopathogens. Sci Rep 7:1–22

    Article  CAS  Google Scholar 

  • Esposito E, Sguizzato M, Drechsler M et al (2017) Progesterone lipid nanoparticles: scaling up and in vivo human study. Eur J Pharm Biopharm 119:437–446

    Article  CAS  PubMed  Google Scholar 

  • Ferreira L (2009) Nanoparticle as tools to study and control stem cells. J Cell Biochem 108(4):746–752

    Article  CAS  PubMed  Google Scholar 

  • Fields BN, Knipe DM, Howley PM (2007) Virus entry and uncoating. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 99–118

    Google Scholar 

  • Gaikwad S, Ingle A, Gade A et al (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine 8:4303–4314

    PubMed  PubMed Central  Google Scholar 

  • Galdiero S, Falanga A, Vitiello M et al (2011) Silver nanoparticles as potential antiviral agents. Molecules 16:8894–8918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego PP, Gago J, Landín M (2011) Artificial neural networks technology to model and predict plant biology process. In: Suzuki K (ed) Artificial neural networks-methodological advances and biomedical applications. InTech, Rijeka, pp 197–216

    Google Scholar 

  • Ge L, Li Q, Wang M et al (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomed 9:2399–2407

    Google Scholar 

  • Ghazali NAB, Mani MP, Jaganathan SK (2018) Green-synthesized zinc oxide nanoparticles decorated nanofibrous polyurethane mesh loaded with virgin coconut oil for tissue engineering application. Curr Nanosci 14:280–289

    Article  CAS  Google Scholar 

  • Ghosh PR, Fawcett D, Sharma SB, Poinern GEJ (2017) Production of high-value nanoparticles via biogenic processes using aquacultural and horticultural food waste. Materials (Basel) 10(852):1–19

    Article  PubMed Central  CAS  Google Scholar 

  • Gobbo OL, Sjaastad K, Radomski MW et al (2015) Magnetic nanoparticles in cancer theranostics. Theranostics 5(11):1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez C, Rosas-Hernandez H, Ramirez-Lee MA et al (2016) Role of silver nanoparticles (AgNPs) on the cardiovascular system. Arch Toxicol 90:493–511

    Article  CAS  PubMed  Google Scholar 

  • González-Ballesteros N, Prado-López S, Rodríguez-González JB et al (2017) Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloid Surf B 153:190–198

    Article  CAS  Google Scholar 

  • Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cell Nanomed B 47(1):844–851

    Article  CAS  Google Scholar 

  • Harshiny M, Matheswaran M, Arthanareeswaran G et al (2015) Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol Environ Safe 121:135–341

    Article  CAS  Google Scholar 

  • Haseeb MT, Hussain MA, Abbas K et al (2017) Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications. Int J Nanomedicine 12:2845–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Du Z, Ma S et al (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (pc3) cells of silver nanoparticles using Dimocarpus longan Lour. peel extract. Nanoscale Res Lett 11(1):300–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Y, Weia F, Mab Z et al (2017) Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv 7:39842–39851

    Article  CAS  Google Scholar 

  • Hembram KC, Kumar R, Kandha L et al (2018) Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artif Cell Nanomed B 46(3):38–51

    Article  Google Scholar 

  • Hoseinpour V, Ghaemi N (2018) Green synthesis of manganese nanoparticles: applications and future perspective–a review. J Photochem Photobiol B 189:234–243

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Qian A, Wang Q et al (2016) Industrialization of lipid nanoparticles: from laboratory-scale to large-scale production line. Eur J Pharm Biopharm 109:206–213

    Article  CAS  PubMed  Google Scholar 

  • Hussain I, Singh NB, Singh A et al (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560

    Article  CAS  PubMed  Google Scholar 

  • Igaz N, Kovács D, Rázga Z et al (2016) Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles. Colloid Surf B 146:670–677

    Article  CAS  Google Scholar 

  • Ioelovich M (2014) Peculiarities of cellulose nanoparticles. TAPPI J 13(5):45–52

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 10:2638–2650

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV et al (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob JBS, Prasad VLS, Sivasankar S et al (2017) Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica – screening for its anticancer activity and toxicity in animal models. Food Chem Toxicol 109:951–956

    Article  CAS  PubMed  Google Scholar 

  • Jang SJ, Yang IJ, Tettey CO et al (2016) In vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater Sci Eng C 68:430–435

    Article  CAS  Google Scholar 

  • Jiang X, Foldbjerg R, Miclaus T et al (2013) Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett 222(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Kajani AA, Bordbar AK, Esfahani SHZ et al (2014) Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv 4:61394–61403

    Article  CAS  Google Scholar 

  • Kalaiselvi D, Mohankumar A, Shanmugam G et al (2019) Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Prot 117:108–114

    Article  CAS  Google Scholar 

  • Kalaivani R, Maruthupandy M, Muneeswaran T et al (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med 2(1):30–35

    Article  Google Scholar 

  • Kanmani P, Rhim JW (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169

    Article  CAS  PubMed  Google Scholar 

  • Karny A, Zinger A, Kajal A et al (2018) Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci Rep 8(1):1–10

    Article  CAS  Google Scholar 

  • Kasithevar M, Saravanan M, Prakash P et al (2017) Green synthesis of silver nanoparticles using Alysicarpus monilifer leaf extract and its antibacterial activity against MRSA and CoNS isolates in HIV patients. J Interdiscip Nanomed 2:131–141

    Article  CAS  Google Scholar 

  • Kaur P, Thakur R, Malwal H et al (2018) Biosynthesis of biocompatible and recyclable silver/iron and gold/iron core-shell nanoparticles for water purification technology. Biocatal Agric Biotechnol 14:189–197

    Article  Google Scholar 

  • Khan M, Siddiqui ZA (2018) Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol 71(3):355–364

    Article  Google Scholar 

  • Khan M, Shaik MR, Adil SF et al (2018) Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalton Trans 35:11988–12010

    Article  Google Scholar 

  • Kinkela D (2016) Banned: a History of pesticides and the science of toxicology. By Frederick Rowe Davis. Environ Hist 21(2):401–403

    Article  Google Scholar 

  • Kirubaharan CJ, Kalpana D, Lee YS et al (2012) Biomediated silver nanoparticles for the highly selective copper (II) ion sensor applications. Ind Eng Chem Res 51(21):7441–7446

    Article  CAS  Google Scholar 

  • Kisyelova T, Novruzova A, Hajiyeva F et al (2016) Effect of the reactor configuration on the production of silver nanoparticles. Chem Eng Trans 47:121–126

    Google Scholar 

  • Ko SW, Soriano JPE, Lee JY et al (2018) Nature derived scaffolds for tissue engineering applications: design and fabrication of a composite scaffold incorporating chitosan-g-D,L-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf. Int J Biol Macromol 110:504–513

    Article  CAS  PubMed  Google Scholar 

  • Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Singh DK, Mohan S et al (2017) Photoinduced green synthesis of silver nanoparticles using aqueous extract of Physalis angulata and its antibacterial and antioxidant activity. J Environ Chem Eng 5:744–756

    Article  CAS  Google Scholar 

  • Loh JW, Schneider J, Carter M (2010) Spinning disc processing technology: potential for large-scale manufacture of chitosan nanoparticles. J Pharm Sci 99(10):4326–4336

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Morrin A, Killard AJ et al (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    Article  CAS  Google Scholar 

  • Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17(7):1–15

    Article  CAS  Google Scholar 

  • Mallamann EJ, Cunha FA, Castro BNMF et al (2015) Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo 57(2):165–167

    Article  CAS  Google Scholar 

  • Masum MMI, Siddiqa MM, Ali KA et al (2019) Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of Rice bacterial Brown stripe. Front Microbiol 10:1–18

    Article  Google Scholar 

  • McKenzie LC, Hutchison JE (2004) Green nanoscience. Chem Today 22(9):30–33

    CAS  Google Scholar 

  • Mehnert W, Mäder K (2012) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47(2–3):165–196

    Google Scholar 

  • Melby T, Westby M (2009) Inhibitors of viral entry. In: Kräusslich HG, Bartenschlager R (eds) Antiviral strategies. Springer, Berlin, pp 177–202

    Chapter  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam BA, Namvar F, Moniri M et al (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565

    Article  CAS  Google Scholar 

  • Moon JW, Rawn CJ, Rondinone AJ et al (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37(10):1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Mori Y, Ono T, Miyahira Y et al (2013) Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza a virus. Nanoscale Res Lett 8:1–6

    Article  CAS  Google Scholar 

  • Mousavi B, Tafvizi F, Zaker Bostanabad S (2018) Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif Cells Nanomed Biotechnol 46:499–510

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar H, Matheswaran M (2015) Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain Chem Eng 3(12):3149–3156

    Article  CAS  Google Scholar 

  • Myers SS, Smith MR, Guth S et al (2017) Climate change and global food systems: potential impacts on food security and undernutrition. Annu Rev Public Health 38:259–277

    Article  PubMed  Google Scholar 

  • Mythili R, Selvankumar T, Kamala-Kannan S (2018) Utilization of market vegetable waste for silver nanoparticle synthesis and its antibacterial activity. Mater Lett 225(15):101–104

    Article  CAS  Google Scholar 

  • Nadaroğlu H, Alayl Güngör A, Ince S (2017) Synthesis of nanoparticles by green synthesis method. INJIRR 1(1):6–9

    Google Scholar 

  • Naka K, Itoh H, Tampo Y et al (2003) Effect of gold nanoparticles as a support for the oligomerization of L-Cysteine in an aqueous solution. Langmuir 19(13):5546–5549

    Article  CAS  Google Scholar 

  • Nakkala JR, Mata R, Sadras SR (2017) Green synthesized nano silver: synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J Colloid Interface Sci 499:33–45

    Article  CAS  PubMed  Google Scholar 

  • Nanaki SG, Pantopoulos K, Bikiaris DN (2011) Synthesis of biocompatible poly (ɛ-caprolactone)-block-poly (propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles. Int J Nanomedicine 6:2981–2995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interf Sci 169(2):59–79

    Article  CAS  Google Scholar 

  • Naz S, Islam M, Tabassum S et al (2019) Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J Mol Struct 1185:1–7

    Article  CAS  Google Scholar 

  • Nicolas J, Mura S, Brambilla D et al (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235

    Article  CAS  PubMed  Google Scholar 

  • Oliveira GCS, Lopes CAP, Sousa MH et al (2019) Synthesis of silver nanoparticles using aqueous extracts of Pterodon emarginatus leaves collected in the summer and winter seasons. Int Nano Lett 9:1–9

    Article  Google Scholar 

  • Orłowski P, Kowalczyk A, Tomaszewska E et al (2018) Antiviral activity of tannic acid modified silver nanoparticles: potential to activate immune response in herpes genitalis. Viruses 10(524):1–15

    Google Scholar 

  • Otari SV, Patil RM, Ghosh SJ, Pawar SH (2014) Green phytosynthesis of silver nanoparticles using aqueous extract of Manilkara zapota (L.) seeds and its inhibitory action against Candida species. Mater Lett 166:367–369

    Article  CAS  Google Scholar 

  • Ould-Ely T, Luger M, Kaplan-Reinig L et al (2011) Large-scale engineered synthesis of BaTiO3 nanoparticles using low-temperature bioinspired principles. Nat Protoc 6(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Paliwal R, Babu RJ, Palakurthi S (2014) Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15(6):1527–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Hong YN, Weyers A et al (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5(3):69–78

    Article  CAS  PubMed  Google Scholar 

  • Patra JK, Baek KH (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:219–230

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545

    Article  PubMed  CAS  Google Scholar 

  • Pozdnyakov A, Emel’yanov A, Kuznetsova N et al (2016) Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity. Int J Nanomedicine 11:1295–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhua D, Arulvasua C, Babua G et al (2013) Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem 48(2):317–324

    Article  CAS  Google Scholar 

  • Pugazhendhi A, Prabhu R, Muruganantham K et al (2019) Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B 190:86–97

    Article  CAS  PubMed  Google Scholar 

  • Puja P, Kumar P (2019) A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 211:94–99

    Article  CAS  Google Scholar 

  • Raftery RM, Tierney EG, Curtin CM et al (2015) Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds. J Control Release 210:84–94

    Article  CAS  PubMed  Google Scholar 

  • Raghunandan D, Ravishankar B, Sharanbasava G et al (2011) Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2(1–6):57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai M, Ingle AP, Paralikar P et al (2017) Recent advances in use of silver nanoparticles as antimalarial agents. Int J Pharm 526:254–270

    Article  CAS  PubMed  Google Scholar 

  • Raj DR, Sudardanakumar C (2017) Colorimetric and fiber optic sensing of cysteine using green synthesized gold nanoparticles. Plasmonics 13:327–334

    Google Scholar 

  • Rajam M, Pulavendran S, Rose C, Mandal AB (2011) Chitosan nanoparticles as a dual growth factor delivery system for tissue engineering applications. Int J Pharm 410(1–2):145–152

    Article  CAS  PubMed  Google Scholar 

  • Rajan R, Chandran K, Harper SL et al (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  • Rajkuberan C, Sudha K, Sathishkumar G et al (2015) Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L. Spectrochim Acta A 136:924–930

    Article  CAS  Google Scholar 

  • Rank LA, Walsh NM, Liu R et al (2017) A cationic polymer that shows high antifungal activity against diverse human pathogens. Antimicrob Agents Chemother 61(10):e00204–e00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed T, Bilal M, Iqbal HMN et al (2017) Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloid Surf B 158:408–415

    Article  CAS  Google Scholar 

  • Ravichandran S (2010) Green chemistry–a potential tool for chemical synthesis. Int J ChemTech Res 2(4):2188–2191

    Google Scholar 

  • Ravindran A, Chandran P, Khan SS (2013) Biofunctionalized silver nanoparticles: advances and prospects. Colloid Surf B 105:342–352

    Article  CAS  Google Scholar 

  • Rehana D, Mahendiran D, Kumar RS et al (2017) In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst Eng 40(6):943–957

    Article  CAS  PubMed  Google Scholar 

  • Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  CAS  PubMed  Google Scholar 

  • Rónavári A, Kovács D, Igaz N et al (2017) Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. Int J Nanomedicine 12:871–883

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosi NL, Giljohann DA, Thaxton CS et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Ruedas-Rama MJ, Walters JD, Orte A et al (2012) Fluorescent nanoparticles for intracellular sensing: a review. Anal Chim Acta 751:1–23

    Article  CAS  PubMed  Google Scholar 

  • Saif A, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6(209):1–26

    Google Scholar 

  • Sakai T, Ishihara A, Alexandridis P (2015) Block copolymer-mediated synthesis of silver nanoparticles from silver ions in aqueous media. Colloids Surf A Physicochem Eng Asp 487:84–91

    Article  CAS  Google Scholar 

  • Santiago TR, Bonatto CC, Rossato M et al (2019) Green synthesis of silver nanoparticles using tomato leaves extract and their entrapment in chitosan nanoparticles to control bacterial wilt. J Sci Food Agric 99:4248

    Article  CAS  PubMed  Google Scholar 

  • Saratale RG, Saratale GD, Shin HS et al (2018) New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut R 25(11):10164–10183

    Article  CAS  Google Scholar 

  • Satapathy S, Shukla SP, Sandeep KP et al (2015) Evaluation of the performance of an algal bioreactor for silver nanoparticle production. J Appl Phycol 27(1):285–291

    Article  CAS  Google Scholar 

  • Sathiyabama M, Manikandan A (2018) Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. J Agric Food Chem 66(8):1784–1790

    Article  CAS  PubMed  Google Scholar 

  • Sathya K, Saravanathamizhan R, Baskar G (2018) ANN modeling for scale-up of green synthesis of iron oxide nanoparticle and its application for decolorization of dye effluent. Desalin Water Treat 121:158–165

    Article  CAS  Google Scholar 

  • Shabanzadeh P, Senu N, Shameli K et al (2013a) Application of artificial neural network (ANN) for prediction diameter of silver nanoparticles biosynthesized in Curcuma longa extract. Dig J Nanomater Biostruct 8(3):1133–1144

    Google Scholar 

  • Shabanzadeh P, Shameli K, Ismail F et al (2013b) Application of artificial neural network (ANN) for the prediction of size of silver nanoparticles prepared by green method. Dig J Nanomater Biostruct 8(2):541–549

    Google Scholar 

  • Shabanzadeh P, Yusof R, Shameli K (2015) Modeling of biosynthesized silver nanoparticles in Vitex negundo L. extract by artificial neural network. RSC Adv 5(106):87277–87285

    Article  CAS  Google Scholar 

  • Shah M, Fawcett D, Sharma S et al (2015a) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 8(11):7278–7308

    Article  CAS  Google Scholar 

  • Shah M, Fawcett D, Sharma S et al (2015b) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    Article  CAS  Google Scholar 

  • Sharma H, Mishra PK, Talegaonkar S et al (2015) Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today 20:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Kaushik S, Pandit P et al (2019) Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl Microbiol Biotechnol 103:881–891

    Article  CAS  PubMed  Google Scholar 

  • Shenton W, Davis SA, Mann S (1999) Direct self-assembly of nanoparticles into macroscopic materials using antibody-antigen recognition. Adv Mater 11(6):449–452

    Article  CAS  Google Scholar 

  • Shivananda CS, Rao BL, Pasha A et al (2016) Synthesis of silver nanoparticles using Bombyxmori silk fibroin and their antibacterial activity. IOP Conf Ser Mater Sci Eng 149. https://doi.org/10.1088/1757-899X/149/1/012175

    Article  Google Scholar 

  • Siddiqui ZA, Khan MR, AbdAllah EF et al (2018) Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. Int J Veg Sci:1–22

    Google Scholar 

  • Silva LP, Reis IG, Bonatto CC (2015) Green synthesis of metal nanoparticles by plants: current trends and challenges. In: Basiuk V, Basiuk E (eds) Green processes for nanotechnology. Springer, Cham, pp 259–275

    Google Scholar 

  • Silva LP, Bonatto CC, Polez VLP (2016) Green synthesis of metal nanoparticles by fungi: current trends and challenges. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology, Fungal biology. Springer, Cham, pp 71–89

    Chapter  Google Scholar 

  • Silveira AP, Bonatto CC, Lopes CAP et al (2018) Physicochemical characteristics and antibacterial effects of silver nanoparticles produced using the aqueous extract of Ilex paraguariensis. Mater Chem Phys 216:476–484

    Article  CAS  Google Scholar 

  • Singh M, Kumar M, Kalaivani R et al (2013) Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng 36(4):407–415

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Kim YJ, Wang C et al (2016) The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif Cells Nanomed Biotechnol 44(4):1150–1157

    Google Scholar 

  • Singh H, Du J, Yi TH (2017) Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities. Artif Cells Nanomed Biotechnol 45(7):1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Souza TAJ, Franchi LP, Rosa LR et al (2016) Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet Toxicol Environ Mutagen 795:70–83

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Worden M, Thliveris JA et al (2016) Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). Nanomedicine: NBM 12(7):1775–1784

    Article  CAS  Google Scholar 

  • Suwan T, Khongkhunthian S, Okonogi S (2019) Silver nanoparticles fabricated by reducing property of cellulose derivatives. Drug Discov Ther 13(2):70–79

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V et al (2014) Abiotic and biotic stress combinations. New Phytol 203(1):32–43

    Article  PubMed  Google Scholar 

  • Tahir R, Bilal M, Iqbal H et al (2017) Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloid Surf B 158:408–415

    Article  CAS  Google Scholar 

  • Tang B, Wang J, Xu S et al (2011) Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric. J Colloid Interface Sci 356(2):513–518

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J et al (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travan A, Pellilo C, Donati I et al (2009) Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 10(6):1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Tu H, Lu Y, Wu Y et al (2015) Fabrication of rectorite-contained nanoparticles for drug delivery with a green and one-step synthesis method. Int J Pharm 493(1–2):426–433

    Article  CAS  PubMed  Google Scholar 

  • Vangijzegem T, Stanicki D, Laurent S (2018) Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv 16:69–78

    Article  PubMed  CAS  Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26(5):1025–1058

    Article  CAS  PubMed  Google Scholar 

  • Vedelago J, Gomez CG, Valente M et al (2018) Green synthesis of silver nanoparticles aimed at improving theranostics. Radiat Phys Chem 146:55–67

    Article  CAS  Google Scholar 

  • Velusamy P, Kumar GV, Jeyanthi V et al (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32(2):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43

    Article  CAS  PubMed  Google Scholar 

  • Virkutyte J, Varma RS (2013) Green synthesis of nanomaterials: environmental aspects. In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements. American Chemical Society, Washington, pp 11–39

    Chapter  Google Scholar 

  • Wang L, Li C, Huang Q et al (2019) Biofunctionalization of selenium nanoparticles with a polysaccharide from Rosa roxburghii fruit and their protective effect against H2O2-induced apoptosis in INS-1 cells. Food Funct 10(2):539–553

    Article  CAS  PubMed  Google Scholar 

  • Weng Y, Liu J, Jin S et al (2017) Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 7(3):281–291

    Article  PubMed  Google Scholar 

  • Withey ABJ, Chen G, Nguyen TL et al (2009) Macromolecular cobalt carbonyl complexes encapsulated in a click-cross-linked micelle structure as a nanoparticle to deliver cobalt pharmaceuticals. Biomacromolecules 10(12):3215–3226

    Article  CAS  PubMed  Google Scholar 

  • Worrall E, Hamid A, Mody K et al (2018) Nanotechnology for plant disease management. Agronomy 285(8):1–24

    Google Scholar 

  • Yadi M, Mostafavi E, Saleh B et al (2018) Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif Cells Nanomed Biotechnol 46(3):336–343

    Article  CAS  Google Scholar 

  • Yallappa S, Manjanna J, Sindhe MA et al (2013) Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim Acta A Mol Biomol Spectrosc 110:108–115

    Article  CAS  PubMed  Google Scholar 

  • Zain NM, Stapley AGF, Shama G (2014) Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym 112(4):195–202

    Article  CAS  PubMed  Google Scholar 

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 3:204–226

    Article  CAS  Google Scholar 

  • Zhao M, Cheng JL, Yan JJ et al (2016) Hyaluronic acid reagent functional chitosan-PEI conjugate with AQP2-siRNA suppressed endometriotic lesion formation. Int J Nanomedicine 2016(11):1323–1336

    Article  CAS  Google Scholar 

  • Zulkifli FH, Hussain FSJ, Zeyohannes SS et al (2017) A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater Sci Eng C 79:151–160

    Article  CAS  Google Scholar 

  • Zuorro A, Iannone A, Natali S et al (2019) Green synthesis of silver nanoparticles using bilberry and red currant waste extracts. Processes 193(7):1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Paulino Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, L.P. et al. (2020). Green Nanoparticles for Biomedical and Bioengineering Applications. In: Shukla, A. (eds) Nanoparticles and their Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0391-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0391-7_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0390-0

  • Online ISBN: 978-981-15-0391-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics