Skip to main content

Use of Nanoparticles to Manage Candida Biofilms

  • Chapter
  • First Online:
Nanoparticles and their Biomedical Applications

Abstract

Candida species constitute an important part of the human oral microbiome and may be found as commensal colonizers in the oral cavity, as well as in the digestive and vaginal tracts. However, disturbances in host homeostasis may cause an overgrowth of these species, resulting in various types of candidiasis. This aspect, in conjunction with its ability to form organized and resistant structures, namely biofilms, has stimulated interest in nanotechnology-based therapies to fight biofilms and improve individuals’ health. This chapter approaches some of the clinical implications of Candida biofilms and their mechanisms of resistance to conventional antimicrobials, as well as the main types of nanoparticles used in controlling and preventing biofilms formed by different Candida species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Fattani MA, Douglas LJ (2004) Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48:3291–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfouzan W, Dhar R, Albarrag A, Al-Abdely H (2019) The emerging pathogen Candida auris: A focus on the Middle-Eastern countries. J Infect Public Health. pii: S1876-0341(19)30118-2

    Google Scholar 

  • Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    Article  CAS  PubMed  Google Scholar 

  • Amaral AC, Saavedra PHV, Oliveira Souza AC, de Melo MT, Tedesco AC, Morais PC et al (2019) Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf B Biointerfaces 174:409–415

    Article  CAS  PubMed  Google Scholar 

  • Amiri M, Etemadifar Z, Daneshkazemi A, Nateghi M (2017) Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and Candida species. J Dent Biomater 4:347–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH et al (2012) Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis 54:1110–1122

    Article  CAS  PubMed  Google Scholar 

  • Ardila N, Daigle F, Heuzey MC, Ajji A (2017) Antibacterial activity of neat chitosan powder and flakes. Molecules 22

    Article  PubMed Central  CAS  Google Scholar 

  • Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and Treatment. J Infect Dis 216:S445–SS51

    Article  CAS  PubMed  Google Scholar 

  • Arias LS, Pessan JP, Vieira APM, Lima TMT, Delbem ACB, Monteiro DR (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel) 7:46

    Article  CAS  Google Scholar 

  • Baigorria E, Reynoso E, Alvarez MG, Milanesio ME, Durantini EN (2018) Silica nanoparticles embedded with water insoluble phthalocyanines for the photoinactivation of microorganisms. Photodiagn Photodyn Ther 23:261–269

    Article  CAS  Google Scholar 

  • Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249

    Article  CAS  PubMed  Google Scholar 

  • Bogdanović U, Vodnik V, Mitrić M, Dimitrijević S, Škapin SD, Žunič V et al (2015) Nanomaterial with high antimicrobial efficacy--copper/polyaniline nanocomposite. ACS Appl Mater Interfaces 7:1955–1966

    Article  PubMed  CAS  Google Scholar 

  • Borman AM, Szekely A, Johnson EM (2016) Comparative pathogenicity of United Kingdom isolates of the emerging pathogen Candida auris and other key pathogenic Candida species. mSphere 1:pii: e00189–16

    Google Scholar 

  • Bourzac K (2012) Nanotechnology: carrying drugs. Nature 491:S58–S60

    Article  PubMed  Google Scholar 

  • Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine 1:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruinsmann FA, Pigana S, Aguirre T, Souto GD, Pereira GG, Bianchera A et al (2019) Chitosan-coated nanoparticles: effect of chitosan molecular weight on nasal transmucosal delivery. Pharmaceutics 11:86

    Article  CAS  PubMed Central  Google Scholar 

  • Butts A, Reitler P, Nishimoto AT, DeJarnette C, Estredge LR, Peters TL et al (2019) A systematic screen reveals a diverse collection of medications induce antifungal resistance in Candida species. Antimicrob Agents Chemother 63(5):pii: e00054–19

    Google Scholar 

  • Chamilos G, Lewis RE, Albert N, Kontoyiannis DP (2007) Paradoxical effect of Echinocandins across Candida species in vitro: evidence for echinocandin-specific and candida species-related differences. Antimicrob Agents Chemother 51:2257–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Yue L, Jiang Q, Xia W (2019) Effect of chitosan with different molecular weight on the stability, antioxidant and anticancer activities of well-dispersed selenium nanoparticles. IET Nanobiotechnol 13:30–35

    Article  PubMed  Google Scholar 

  • Cierech M, Kolenda A, Grudniak AM, Wojnarowicz J, Woźniak B, Gołaś M et al (2016) Significance of polymethylmethacrylate (PMMA) modification by zinc oxide nanoparticles for fungal biofilm formation. Int J Pharm 510:323–335

    Article  CAS  PubMed  Google Scholar 

  • Cierech M, Osica I, Kolenda A, Wojnarowicz J, Szmigiel D, Łojkowski W et al (2018) Mechanical and physicochemical properties of newly formed ZnO-PMMA nanocomposites for denture bases. Nanomaterials (Basel) 8:pii: E305

    Google Scholar 

  • Coco BJ, Bagg J, Cross LJ, Jose A, Cross J, Ramage G (2008) Mixed Candida albicans and Candida glabrata populations associated with the pathogenesis of denture stomatitis. Oral Microbiol Immunol 23:377–383

    Article  CAS  PubMed  Google Scholar 

  • Costa SF, Marinho I, Araújo EA, Manrique AE, Medeiros EA, Levin AS (2000) Nosocomial fungaemia: a 2-year prospective study. J Hosp Infect 45:69–72

    Article  CAS  PubMed  Google Scholar 

  • Costa EM, Silva S, Vicente S, Neto C, Castro PM, Veiga M et al (2017) Chitosan nanoparticles as alternative anti-staphylococci agents: bactericidal, antibiofilm and antiadhesive effects. Mater Sci Eng C Mater Biol Appl 79:221–226

    Article  CAS  PubMed  Google Scholar 

  • Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S et al (2016) Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol 9:758–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dananjaya SHS, Kumar RS, Yang M, Nikapitiya C, Lee J, De Zoysa M (2018) Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. Int J Biol Macromol 108:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • de Alteriis E, Maselli V, Falanga A, Galdiero S, Di Lella FM, Gesuele R et al (2018) Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infect Drug Resist 11:915–925

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartagenes MDS, Filho A, do Nascimento FRF et al (2018) Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol 9:1351

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza ME, Clerici DJ, Verdi CM, Fleck G, Quatrin PM, Spat LE et al (2017) Antimicrobial activity of Melaleuca alternifolia nanoparticles in polymicrobial biofilm in situ. Microb Pathog 113:432–437

    Article  PubMed  CAS  Google Scholar 

  • de Souza-Neto FN, Sala RL, Fernandes RA, Xavier TPO, Cruz SA, Paranhos CM et al (2019) Effect of synthetic coloidal nanoparticles in acrylic resin of dental use. Eur Polym J 112:531–538

    Article  CAS  Google Scholar 

  • El-Batal AI, El-Sayyad GS, El-Ghamry A, Agaypi KM, Elsayed MA, Gobara M (2017) Melanin-gamma rays assistants for bismuth oxide nanoparticles synthesis at room temperature for enhancing antimicrobial, and photocatalytic activity. J Photochem Photobiol B 173:120–139

    Article  CAS  PubMed  Google Scholar 

  • El-Batal AI, Al-Hazmi NE, Mosallam FM, El-Sayyad GS (2018) Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb Pathog 118:159–169

    Article  CAS  PubMed  Google Scholar 

  • Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 4:411–427

    CAS  Google Scholar 

  • Elving GJ, van Der Mei HC, Busscher HJ, van Weissenbruch R, Albers FW (2001) Air-flow resistances of silicone rubber voice prostheses after formation of bacterial and fungal biofilms. J Biomed Mater Res 58:421–426

    Article  CAS  PubMed  Google Scholar 

  • Ganguly S, Mitchell AP (2011) Mucosal biofilms of Candida albicans. Curr Opin Microbiol 14:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendreau L, Loewy ZG (2011) Epidemiology and etiology of denture stomatitis. J Prosthodont 20:251–260

    Article  PubMed  Google Scholar 

  • Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S (2016) Vulvovaginal candidiasis: epidemiology, microbiology and risk factors. Crit Rev Microbiol 42:905–927

    Article  PubMed  CAS  Google Scholar 

  • Gondim BLC, Castellano LRC, de Castro RD, Machado G, Carlo HL, Valenca AMG et al (2018) Effect of chitosan nanoparticles on the inhibition of Candida spp. biofilm on denture base surface. Arch Oral Biol 94:99–107

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun (Camb) 9:941–949

    Article  CAS  Google Scholar 

  • Guisbiers G, Lara HH, Mendoza-Cruz R, Naranjo G, Vincent BA, Peralta XG et al (2017) Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine 13:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Haegler P, Joerin L, Krähenbüll S, Bouitbir J (2017) Hepatocellular toxicity of imidazole and triazole antimycotic agents. Toxicol Sci 157:183–195

    Article  CAS  PubMed  Google Scholar 

  • Haghighi F, Mohammadi SR, Mohammadi P, Eskandari M, Hosseinkhani S (2012) The evaluation of Candida albicans biofilms formation on silicone catheter, PVC and glass coated with titanium dioxide nanoparticles by XTT method and ATPase assay. Bratisl Lek Listy 113:707–711

    CAS  PubMed  Google Scholar 

  • Halbandge SD, Jadhav AK, Jangid PM, Shelar AV, Patil RH, Karuppayil SM (2019) Molecular targets of biofabricated silver nanoparticles in Candida albicans. J Antibiot (Tokyo), [epub ahead of print]. https://doi.org/10.1038/s41429-019-0185-9

    Article  CAS  PubMed  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (2002) In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. J Antimicrob Chemother 50:195–199

    Article  CAS  PubMed  Google Scholar 

  • Healey KR, Perlin DS (2018) Fungal resistance to echinocandins and the MDR phenomenon in Candida glabrata. J Fungi (Basel) 4

    Google Scholar 

  • Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I, Arevalo-Niño K et al (2013) Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomedicine 8:1645–1652

    PubMed  PubMed Central  Google Scholar 

  • Hernandez-Delgadillo R, Del Angel-Mosqueda C, Solís-Soto JM, Munguia-Moreno S, Pineda-Aguilar N, Sánchez-Nájera RI et al (2017) Antimicrobial and antibiofilm activities of MTA supplemented with bismuth lipophilic nanoparticles. Dent Mater J 36:503–510

    Article  CAS  PubMed  Google Scholar 

  • Hetrick EM, Shin JH, Paul HS, Schoenfisch MH (2009) Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30:2782–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota K, Yumoto H, Sapaar B, Matsuo T, Ichikawa T, Miyake Y (2017) Pathogenic factors in Candida biofilm-related infectious diseases. J Appl Microbiol 122:321–330

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SS, Ghaemi E, Koohsar F (2018) Influence of ZnO nanoparticles on Candida albicans isolates biofilm formed on the urinary catheter. Iran J Microbiol 10:424–432

    PubMed  PubMed Central  Google Scholar 

  • Hu Z, Zhang DY, Lu ST, Li PW, Li SD (2018) Chitosan-based composite materials for prospective hemostatic applications. Mar Drugs 16

    Article  PubMed Central  CAS  Google Scholar 

  • Hussein-Al-Ali SH, El Zowalaty ME, Kura AU, Geilich B, Fakurazi S, Webster TJ et al (2014) Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite. Biomed Res Int 2014:651831

    Article  PubMed  PubMed Central  Google Scholar 

  • Jabra-Rizk MA, Falkler WA, Meiller TF (2004) Fungal biofilms and drug resistance. Emerg Infect Dis 10:14–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jebali A, Hajjar FH, Pourdanesh F, Hekmatimoghaddam S, Kazemi B, Masoudi A et al (2014) Silver and gold nanostructures: antifungal property of different shapes of these nanostructures on Candida species. Med Mycol 52:65–72

    PubMed  Google Scholar 

  • Jones EM, Cochrane CA, Percival SL (2015) The effect of pH on the extracellular matrix and biofilms. Adv Wound Care (New Rochelle) 4:431–439

    Article  Google Scholar 

  • Jothiprakasam V, Sambantham M, Chinnathambi S, Vijayaboopathi S (2017) Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA. Arch Oral Biol 73:21–24

    Article  CAS  PubMed  Google Scholar 

  • Kahan DM, Braman D, Slovic P, Gastil J, Cohen G (2009) Cultural cognition of the risks and benefits of nanotechnology. Nat Nanotechnol 4:87–90

    Article  CAS  PubMed  Google Scholar 

  • Kalliola S, Repo E, Srivastava V, Heiskanen JP, Sirvio JA, Liimatainen H et al (2017) The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions. Colloids Surf B Biointerfaces 153:229–236

    Article  CAS  PubMed  Google Scholar 

  • Kanafani ZA, Perfect JR (2008) Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 46:120–128

    Article  PubMed  Google Scholar 

  • Kanugala S, Jinka S, Puvvada N, Banerjee R, Kumar CG (2019) Phenazine-1-carboxamide functionalized mesoporous silica nanoparticles as antimicrobial coatings on silicone urethral catheters. Sci Rep 9:6198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazempour ZB, Yazdi MH, Rafii F, Shahverdi AR (2013) Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iran J Microbiol 5:81–85

    PubMed  PubMed Central  Google Scholar 

  • Kean R, Sherry L, Townsend E, McKloud E, Short B, Akinbobola A et al (2018) Surface disinfection challenges for Candida auris: an in-vitro study. J Hosp Infect 98:433–436

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Alam F, Azam A, Khan AU (2012) Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomedicine 7:3245–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan I, Khan M, Umar MN, Oh DH (2015) Nanobiotechnology and its applications in drug delivery system: a review. IET Nanobiotechnol 9:396–400

    Article  CAS  PubMed  Google Scholar 

  • Kheradmand E, Rafii F, Yazdi MH, Sepahi AA, Shahverdi AR, Oveisi MR (2014) The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans. Daru 22:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kıvanç M, Barutca B, Koparal AT, Göncü Y, Bostancı SH, Ay N (2018) Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Mater Sci Eng C Mater Biol Appl 91:115–124

    Article  PubMed  CAS  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  • Krokowicz L, Tomczak H, Bobkiewicz A, Mackiewicz J, Marciniak R, Drews M et al (2015) In Vitro studies of antibacterial and antifungal wound dressings comprising H2TiO3 and SiO2 nanoparticles. Pol J Microbiol 64:137–142

    Article  PubMed  Google Scholar 

  • Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B Biointerfaces 128:17–22

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, El-Fiqi A, Jo JK, Kim DA, Kim SC, Jun SK et al (2016) Development of long-term antimicrobial poly(methyl methacrylate) by incorporating mesoporous silica nanocarriers. Dent Mater 32:1564–1574

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu J, Ding S, Zhang C, Shen W, You Q (2009) Synthesis of novel pH-sensitive chitosan graft copolymers and micellar solubilization of paclitaxel. Int J Biol Macromol 44:249–256

    Article  CAS  PubMed  Google Scholar 

  • Lin Teng Shee F, Arul J, Brunet S, Mateescu AM, Bazinet L (2006) Solubilization of chitosan by bipolar membrane electroacidification. J Agric Food Chem 54:6760–6764

    Article  PubMed  CAS  Google Scholar 

  • Lino MM, Paulo CS, Vale AC, Vaz MF, Ferreira LS (2013) Antifungal activity of dental resins containing amphotericin B-conjugated nanoparticles. Dent Mater 29:e252–e262

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Garrido-Maestu A, Jeong KC (2017) Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: a review. Carbohydr Polym 176:257–265

    Article  CAS  PubMed  Google Scholar 

  • Marcos-Arias C, Vicente JL, Sahand IH, Eguia A, De-Juan A, Madariaga L et al (2009) Isolation of Candida dubliniensis in denture stomatitis. Arch Oral Biol 54:127–131

    Article  CAS  PubMed  Google Scholar 

  • Mesa-Arango AC, Scorzoni L, Zaragoza O (2012) It only takes one to do many jobs: amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 3:286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34:103–110

    Article  CAS  PubMed  Google Scholar 

  • Monteiro DR, Gorup LF, Silva S, Negri M, de Camargo ER, Oliveira R et al (2011) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling 27:711–719

    Article  CAS  PubMed  Google Scholar 

  • Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R et al (2012) Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Lett Appl Microbiol 54:383–391

    Article  CAS  PubMed  Google Scholar 

  • Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R et al (2013) Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses 56:672–680

    Article  CAS  PubMed  Google Scholar 

  • Monteiro DR, Takamiya AS, Feresin LP, Gorup LF, de Camargo ER, Delbem AC et al (2014) Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic. Med Mycol 52:627–635

    Article  CAS  PubMed  Google Scholar 

  • Monteiro DR, Takamiya AS, Feresin LP, Gorup LF, de Camargo ER, Delbem AC et al (2015) Susceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phases. J Prosthodont Res 59:42–48

    Article  PubMed  Google Scholar 

  • Moran C, Grussemeyer CA, Spalding JR, Benjamin DK Jr, Reed SD (2009) Candida albicans and non-albicans bloodstream infections in adult and pediatric patients: comparison of mortality and costs. Pediatr Infect Dis J 28:433–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Morschhauser J (2002) The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta 1587:240–248

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SA, Ghotaslou R, Kordi S, Khoramdel A, Aeenfar A, Kahjough ST et al (2018) Antibacterial and antifungal effects of chitosan nanoparticles on tissue conditioners of complete dentures. Int J Biol Macromol 118:881–885

    Article  CAS  PubMed  Google Scholar 

  • Mudiar R, Kelkar-Mane V (2018) Targeting fungal menace through copper nanoparticles and Tamrajal. J Ayurveda Integr Med. pii: S0975-9476(17)30481-3

    Google Scholar 

  • Muzzarelli RAA, Jeuniaux C, Gooday GW (1986) Chitin in nature and technology. Plenum Press, New York

    Book  Google Scholar 

  • Niemirowicz K, Bucki R (2017) Enhancing the fungicidal activity of antibiotics: are magnetic nanoparticles the key? Nanomedicine (Lond) 12:1747–1749

    Article  CAS  Google Scholar 

  • Niemirowicz K, Markiewicz KH, Wilczewska AZ, Car H (2012) Magnetic nanoparticles as new diagnostic tools in medicine. Adv Med Sci 57:196–207

    Article  CAS  PubMed  Google Scholar 

  • Niemirowicz K, Durnas B, Tokajuk G, Gluszek K, Wilczewska AZ, Misztalewska I et al (2016) Magnetic nanoparticles as a drug delivery system that enhance fungicidal activity of polyene antibiotics. Nanomedicine 12:2395–2404

    Article  CAS  PubMed  Google Scholar 

  • Nikawa H, Hamada T, Yamamoto T (1998) Denture plaque – past and recent concerns. J Dent 26:299–304

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsameher N, Rezaei S, Khodavasiy S, Salari S, Hadizade S, Kord M et al (2017) Effect of biogenic selenium nanoparticles on ERG11 and CDR1 gene expression in both fluconazole-resistant and -susceptible Candida albicans isolates. Curr Med Mycol 3:16–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Peiris M, Gunasekara T, Jayaweera PM, Fernando S (2018) TiO2 nanoparticles from Baker’s yeast: a potent antimicrobial. J Microbiol Biotechnol 28:1664–1670

    Article  PubMed  Google Scholar 

  • Perlin DS (2015) Echinocandin resistance in Candida. Clin Infect Dis 61(Suppl 6):S612–S617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaller M, Riley J, Koerner T (1989) Effects of cilofungin (LY121019) on carbohydrate and sterol composition of Candida albicans. Eur J Clin Microbiol Infect Dis 8:1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Pokrowiecki R, Zaręba T, Szaraniec B, Pałka K, Mielczarek A, Menaszek E et al (2017) In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. Int J Nanomedicine 12:4285–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priyanka KP, Sukirtha TH, Balakrishna KM, Varghese T (2016) Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method. IET Nanobiotechnol 10:81–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Pumeesat P, Muangkaew W, Ampawong S, Luplertlop N (2017) Candida albicans biofilm development under increased temperature. New Microbiol 40:279–283

    CAS  PubMed  Google Scholar 

  • Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Rajendran R, Sherry L, Deshpande A, Johnson EM, Hanson MF, Williams C et al (2016a) A prospective surveillance study of Candidaemia: epidemiology, risk factors, antifungal treatment and outcome in hospitalized patients. Front Microbiol 7:915

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendran R, Sherry L, Nile CJ, Sherriff A, Johnson EM, Hanson MF et al (2016b) Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection-Scotland, 2012–2013. Clin Microbiol Infect 22(1):87–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Rajendran R, Sherry L, Williams C (2012) Fungal biofilm resistance. Int J Microbiol 2012:528521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramage G, Robertson SN, Williams C (2014) Strength in numbers: antifungal strategies against fungal biofilms. Int J Antimicrob Agents 43:114–120

    Article  CAS  PubMed  Google Scholar 

  • Regiel-Futyra A, Kus-Liskiewicz M, Sebastian V, Irusta S, Arruebo M, Kyziol A et al (2017) Development of noncytotoxic silver-chitosan nanocomposites for efficient control of biofilm forming microbes. RSC Adv 7:52398–52413

    Article  CAS  PubMed  Google Scholar 

  • Salari S, Sadat Seddighi N, Ghasemi Nejad Almani P (2018) Evaluation of biofilm formation ability in different Candida strains and anti-biofilm effects of Fe3O4-NPs compared with fluconazole: an in vitro study. J Mycol Med 28:23–28

    Article  CAS  PubMed  Google Scholar 

  • Sayed SI, Datta S, Deore N, Kazi RA, Jagade MV (2012) Prevention of voice prosthesis biofilms: current scenario and future trends in prolonging prosthesis lifetime. J Indian Med Assoc 110:175–178, 180

    PubMed  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767–2781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seong M, Lee DG (2018) Reactive oxygen species-independent apoptotic pathway by gold nanoparticles in Candida albicans. Microbiol Res 207:33–40

    Article  CAS  PubMed  Google Scholar 

  • Shakibaie M, Salari Mohazab N, Ayatollahi Mousavi SA (2015) Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans. Jundishapur J Microbiol 8:e26381

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherwani MA, Tufail S, Khan AA, Owais M (2015) Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: potential for treatment of C. albicans infection in BALB/c mice. PLoS One 10:e0131684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shih PY, Liao YT, Tseng YK, Deng FS, Lin CH (2019) A potential antifungal effect of chitosan against Candida albicans is mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Front Microbiol 10:602

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirtliff ME, Peters BM, Jabra-Rizk MA (2009) Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299:1–8

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36:288–305

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Pires P, Monteiro DR, Negri M, Gorup LF, Camargo ER et al (2013) The effect of silver nanoparticles and nystatin on mixed biofilms of Candida glabrata and Candida albicans on acrylic. Med Mycol 51:178–184

    Article  CAS  PubMed  Google Scholar 

  • Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R (2014) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 129:255–258

    Article  CAS  PubMed  Google Scholar 

  • Slavin YN, Asnis J, Hafeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65

    Article  CAS  Google Scholar 

  • Sousa F, Sanavio B, Saccani A, Tang Y, Zucca I, Carney TM et al (2017) Superparamagnetic nanoparticles as high efficiency magnetic resonance imaging T2 contrast agent. Bioconjug Chem 28:161–170

    Article  CAS  PubMed  Google Scholar 

  • Souza ME, Lopes LQ, Bonez PC, Gündel A, Martinez DS, Sagrillo MR et al (2017) Melaleuca alternifolia nanoparticles against Candida species biofilms. Microb Pathog 104:125–132

    Article  CAS  PubMed  Google Scholar 

  • Sudjana AN, Carson CF, Carson KC, Riley TV, Hammer KA (2012) Candida albicans adhesion to human epithelial cells and polystyrene and formation of biofilm is reduced by sub-inhibitory Melaleuca alternifolia (tea tree) essential oil. Med Mycol 50:863–870

    Article  PubMed  Google Scholar 

  • Sun J, Xu Y, Zhu B, Gao G, Ren J, Wang H et al (2019) Synergistic effects of titanium dioxide and cellulose on the properties of glassionomer cement. Dent Mater J 38:41–51

    Article  CAS  PubMed  Google Scholar 

  • Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A et al (2017) Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B 171:117–124

    Article  CAS  Google Scholar 

  • Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan YN, Lee KH, Su X (2011) Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms. Anal Chem 83:4251–4257

    Article  CAS  PubMed  Google Scholar 

  • Tokajuk G, Niemirowicz K, Deptula P, Piktel E, Ciesluk M, Wilczewska AZ et al (2017) Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity. Int J Nanomedicine 12:7833–7846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM (2017) Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing – the fututre in dental care for elderly edentulous patients? J Dent 59:68–77

    Article  CAS  PubMed  Google Scholar 

  • Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8:4467–4479

    PubMed  PubMed Central  Google Scholar 

  • Vieira APM, Arias LS, de Souza Neto FN, Kubo AM, Lima BHR, de Camargo ER et al (2019) Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids Surf B Biointerfaces 174:224–231

    Article  CAS  PubMed  Google Scholar 

  • Viudes A, Pemán J, Cantón E, Ubeda P, López-Ribot JL, Gobernado M (2002) Candidemia at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors for death. Eur J Clin Microbiol Infect Dis 21:767–774

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Hsu CH, Li Z, Hwang LP, Lin YC, Chou PT et al (2017) Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia. Int J Nanomedicine 12:6273–6287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani IA, Ahmad T, Manzoor N (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B Biointerfaces 101:162–170

    Article  CAS  PubMed  Google Scholar 

  • Watamoto T, Samaranayake LP, Egusa H, Yatani H, Seneviratne CJ (2011) Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals. J Med Microbiol 60:1241–1247

    Article  CAS  PubMed  Google Scholar 

  • Williams C, Ramage G (2015) Fungal biofilms in human disease. Adv Exp Med Biol 831:11–27

    Article  PubMed  Google Scholar 

  • Williams DW, Kuriyama T, Silva S, Malic S, Lewis MA (2011) Candida biofilms and oral candidosis: treatment and prevention. Periodontol 2000 55:250–265

    Article  PubMed  Google Scholar 

  • Xiang MJ, Liu JY, Ni PH, Wang S, Shi C, Wei B et al (2013) Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res 13:386–393

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Zhang J, Li M, Cao Y, Xu Z, Cao Y et al (2008) DNA microarray analysis of fluconazole resistance in a laboratory Candida albicans strain. Acta Biochim Biophys Sin Shanghai 40:1048–1060

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M (2016) Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 6:26667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, She X, Merenstein D, Wang C, Hamilton P, Blackmon A et al (2014) Fluconazole resistance patterns in Candida species that colonize women with HIV infection. Curr Ther Res Clin Exp 76:84–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monteiro, D.R. et al. (2020). Use of Nanoparticles to Manage Candida Biofilms. In: Shukla, A. (eds) Nanoparticles and their Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0391-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0391-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0390-0

  • Online ISBN: 978-981-15-0391-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics