Skip to main content

Nanomedicine for Hepatic Fibrosis

  • Chapter
  • First Online:
Nanoparticles and their Biomedical Applications

Abstract

Hepatic fibrosis is a wound-healing response and commonly proceeded by chronic liver injury. Phenotypic activation of hepatic stellate cells (HSCs) plays a significant role in the progression of hepatic fibrosis; thus, they are the target cells of antifibrotic therapy. Many drugs show promising antifibrotic effects in vitro and in vivo studies, and they often exhibit a poor effect in clinical translation due to an insufficient amount of drug accumulation around the target cells (HSCs, hepatocytes, Kupffer cells, etc.) responsible for hepatic fibrosis. Nanomedicines used as theranostic agents can provide novel therapeutic opportunities to deliver antifibrotic compounds with poor water solubility and bioavailability. In recent years, nanoparticle-based antifibrotic therapy has emerged as one of the strategies to suppress the HSC activation and to resolve hepatic fibrosis. The inorganic and organic nanoparticles laden with poorly soluble herbal and synthetic drugs, siRNA with the decoration of HSC-specific molecules, i.e., retinol or receptors, have been studied as the therapeutic strategies to deliver the drugs precisely into HSCs. This review highlights various nano-based HSC targets used in the treatment of liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari A, Polley N, Darbar S, Bagchi D, Pal SK (2016) Citrate functionalized Mn3O4 in nanotherapy of hepatic fibrosis by oral administration. Future Sci OA 2(4):FSO146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida JP, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 6(5):815–835

    Article  CAS  PubMed  Google Scholar 

  • Bashandy SAE, Alaamer A, Moussa SAA, Omara EA (2018) Role of zinc oxide nanoparticles in alleviating hepatic fibrosis and nephrotoxicity induced by thioacetamide in rats. Can J Physiol Pharmacol 96(4):337–344

    Article  CAS  PubMed  Google Scholar 

  • Bisht S, Khan MA, Bekhit M et al (2011) A polymeric nanoparticle formulation of curcumin (NanoCurc) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation. Lab Investig 91(9):1383–1395

    Article  CAS  PubMed  Google Scholar 

  • Cella D, Peterman A, Hudgens S, Webster K, Socinski MA (2003) Measuring the side effects of taxane therapy in oncology: the functional assesment of cancer therapy-taxane (FACT-taxane). Cancer 98(4):822–831

    Article  CAS  PubMed  Google Scholar 

  • Cengiz M, Kutlu HM, Burukoglu DD, Ayhancı A (2015) A comparative study on the therapeutic effects of silymarin and silymarin-loaded solid lipid nanoparticles on D-GaIN/TNF-α-induced liver damage in Balb/c mice. Food Chem Toxicol 77:93–100

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Yang Y, Gao DY et al (2018) Docetaxel-carboxymethylcellulose nanoparticles ameliorate CCl4-induced hepatic fibrosis in mice. J Drug Target 26(5–6):516–524

    Article  CAS  PubMed  Google Scholar 

  • Chen YN, Hsu SL, Liao MY et al (2016) Ameliorative effect of curcumin-encapsulated hyaluronic acid-PLA nanoparticles on thioacetamide-induced murine hepatic fibrosis. Int J Environ Res Public Health 14(1):11. pii: E11

    Article  PubMed Central  CAS  Google Scholar 

  • Chen Y, Liu YC, Sung YC et al (2017) Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors. Sci Rep 7:44123

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Souza AA, Devarajan PV (2015) Asialoglycoprotein receptor mediated hepatocyte targeting – strategies and applications. J Control Release 203:126–139

    Article  PubMed  CAS  Google Scholar 

  • Das A, Mukherjee P, Singla SK et al (2010) Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide. Nanotechnology 21(30):305102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Carvalho TG, Garcia VB, de Araújo AA et al (2018) Spherical neutral gold nanoparticles improve anti-inflammatory response, oxidative stress and fibrosis in alcohol-methamphetamine-induced liver injury in rats. Int J Pharm 548(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • deLeeuw AM, McCarthy SP, Geerts A, Knook DL (1984) Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology 4:392–403

    Article  CAS  Google Scholar 

  • Duncan JS, Whittle MC, Nakamura K et al (2012) Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149(2):307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duong HT, Dong Z, Su L et al (2015) The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. Small 11(19):2291–2304

    Article  CAS  PubMed  Google Scholar 

  • Eguchi A, Yoshitomi T, Lazic M et al (2015) Redox nanoparticles as a novel treatment approach for inflammation and fibrosis associated with nonalcoholic steatohepatitis. Nanomedicine (Lond) 10(17):2697–2708

    Article  CAS  Google Scholar 

  • Ezhilarasan D (2018) Oxidative stress is bane in chronic liver diseases: clinical and experimental perspective. Arab J Gastroenterol 19(2):56–64

    Article  PubMed  Google Scholar 

  • Ezhilarasan D, Karthikeyan S (2016) Silibinin alleviates N-nitrosodimethylamine-induced glutathione dysregulation and hepatotoxicity in rats. Chin J Nat Med 14(1):40–47

    PubMed  Google Scholar 

  • Ezhilarasan D, Karthikeyan S, Vivekanandan P (2012) Ameliorative effect of silibinin against N-nitrosodimethylamine-induced hepatic fibrosis in rats. Environ Toxicol Pharmacol 34(3):1004–1013

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasan D, Sokal E, Karthikeyan S, Najimi M (2014) Plant derived antioxidants and antifibrotic drugs: past, present and future. J Coast Life Med 2(9):738–745

    Article  Google Scholar 

  • Ezhilarasan D, Evraerts J, Brice S et al (2016) Silibinin inhibits proliferation and migration of human hepatic stellate LX-2 cells. Clin Exp Hepatol 6(3):167–174

    Article  Google Scholar 

  • Ezhilarasan D, Evraerts J, Sid B et al (2017) Silibinin induces hepatic stellate cell cycle arrest via enhancing p53/p27 and inhibiting Akt downstream signaling protein expression. Hepatobiliary Pancreat Dis Int 16(1):80–87

    Article  PubMed  Google Scholar 

  • Ezhilarasan D, Sokal E, Najimi M (2018) Hepatic fibrosis: it is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreat Dis Int 17:192–197

    Article  PubMed  Google Scholar 

  • Friedman SL (1990) Cellular sources of collagen and regulation of collagen production in liver. Semin Liver Dis 10(1):20–29

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2008) Hepatic fibrosis – overview. Toxicology 254(3):120–129

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL (2015) Hepatic fibrosis: emerging therapies. Dig Dis 33(4):504–507

    Article  PubMed  Google Scholar 

  • Friedman SL, Bissell DM (1990) Hepatic fibrosis: new insights into pathogenesis. Hosp Pract (Off Ed) 25(5):43–50

    Article  CAS  Google Scholar 

  • Friedman SL, Roll FJ, Boyles J, Bissell DM (1985) Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 82:8681–8685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao DY, Han LM, Zhang LH, Fang XL, Wang JX (2009) Bioavailability of salvianolic acid B and effect on blood viscosities after oral administration of salvianolic acids in beagle dogs. Arch Pharm Res 32(5):773–779

    Article  CAS  PubMed  Google Scholar 

  • Giannitrapani L, Soresi M, Bondì ML, Montalto G, Cervello M (2014) Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol 20(23):7242–7251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison SA, Abdelmalek MF, Caldwell S et al (2018) Simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis. Gastroenterology 155:1140–1153. S0016-5085(18):34758-9

    Article  CAS  PubMed  Google Scholar 

  • He Q, Zhang J, Chen F et al (2010) An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles. Biomaterials 31(30):7785–7796

    Article  CAS  PubMed  Google Scholar 

  • Hemmann S, Graf J, Roderfeld M, Roeb E (2007) Expression of MMPs and TIMPs in liver fibrosis – a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 46(5):955–975

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Friedman SL, Hoshida Y (2017) Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 121:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Tian J, Jiang W, Gao Y, Fu F (2011) Therapeutic effects of SMND-309, a new metabolite of salvianolic acid B, on experimental liver fibrosis. Eur J Pharmacol 650(1):390–395

    Article  CAS  PubMed  Google Scholar 

  • Hsu WH, Lee BH, Hsu YW, Pan TM (2013) Peroxisome proliferator-activated receptor-γ activators monascin and rosiglitazone attenuate carboxymethyllysine-induced fibrosis in hepatic stellate cells through regulating the oxidative stress pathway but independent of the receptor for advanced glycation end products signaling. J Agric Food Chem 61(28):6873–6879

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Xie J, Bi Q et al (2017) Highly selective targeting of hepatic stellate cells for liver fibrosis treatment using a d-Enantiomeric peptide ligand of Fn14 identified by Mirror-image mRNA display. Mol Pharm 14(5):1742–1753

    Article  CAS  PubMed  Google Scholar 

  • Hussein J, El-Banna M, Mahmoud KF et al (2017) The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis. Biomed Pharmacother 90:880–887

    Article  CAS  PubMed  Google Scholar 

  • Ikenaga N, Peng ZW, Vaid KA et al (2017) Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 66(9):1697–1708

    Article  CAS  PubMed  Google Scholar 

  • Iwakiri Y (2015) Nitric oxide in liver fibrosis: the role of inducible nitric oxide synthase. Clin Mol Hepatol 21(4):319–325

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamwal R (2018) Bioavailable curcumin formulations: a review of pharmacokinetic studies in healthy volunteers. J Integr Med 16(6):367–374. pii: S2095-4964(18)30077-3

    Article  PubMed  Google Scholar 

  • Jia Z, Gong Y, Pi Y et al (2018) pPB peptide-mediated siRNA-loaded stable nucleic acid lipid nanoparticles on targeting therapy of hepatic fibrosis. Mol Pharm 15(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Xia LZ, Li Y, Li X, Wu J (2013) Effect of Panax notoginseng saponins on expressions of MMP-13 and TIMP-1 in rats with hepatic fibrosis. Zhongguo Zhong Yao ZaZhi 38(8):1206–1210

    Google Scholar 

  • Jiménez Calvente C, Sehgal A et al (2015) Specific hepatic delivery of procollagen α1(I) small interfering RNA in lipid-like nanoparticles resolves liver fibrosis. Hepatology 62(4):1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Kaps L, Nuhn L, Aslam M et al (2015) In vivo gene-silencing in fibrotic liver by siRNA-loaded cationic nanohydrogel particles. Adv Healthc Mater 4(18):2809–2815

    Article  CAS  PubMed  Google Scholar 

  • Khaja F, Jayawardena D, Kuzmis A, Önyüksel H (2016) Targeted sterically stabilized phospholipid siRNANanomedicine for hepatic and renal fibrosis. Nanomaterials (Basel) 6(1):pii: E8

    Article  CAS  Google Scholar 

  • Kieslichova E, Frankova S, Protus M et al (2018) Acute liver failure due to Amanita phalloides poisoning: therapeutic approach and outcome. Transplant Proc 50(1):192–197

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi S, Griffin CT, Wang SS, Bissell DM (2005) Role of CD44 in epithelial wound repair: migration of rat hepatic stellate cells utilizes hyaluronic acid and CD44v6. J Biol Chem 280(15):15398–15404

    Article  CAS  PubMed  Google Scholar 

  • Kisseleva T, Cong M, Paik Y et al (2012) Myofibroblast revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 109(24):9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong WH, Park K, Lee MY et al (2013) Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis. Biomaterials 34(2):542–551

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Rai A, Reddy ND et al (2014a) Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacol Rep 66(5):788–798

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Mundra V, Mahato RI (2014b) Nanomedicines of hedgehog inhibitor and PPAR-γ agonist for treating liver fibrosis. Pharm Res 31(5):1158–1169

    Article  CAS  PubMed  Google Scholar 

  • Lee YA, Wallace MC, Friedman SL (2015) Pathobiology of liver fibrosis: a translational success story. Gut 64(5):830–841

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Mu M, Yuan L, Zeng B, Lin S (2018) Challenges in the early diagnosis of patients with acute liver failure induced by amatoxin poisoning: two case reports. Medicine (Baltimore) 97(27):e11288

    Article  CAS  Google Scholar 

  • Lin TT, Gao DY, Liu YC et al (2016) Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J Control Release 221:62–70

    Article  CAS  PubMed  Google Scholar 

  • Liu CH, Chan KM, Chiang T et al (2016) Dual-functional nanoparticles targeting CXCR4 and delivering AntiangiogenicsiRNA ameliorate liver fibrosis. Mol Pharm 13:2253–2262

    Article  PubMed  CAS  Google Scholar 

  • Mehal WZ, Schuppan D (2015) Antifibrotic therapies in the liver. Semin Liver Dis 35(2):184–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Z, Meng L, Wang K et al (2015) Enhanced hepatic targeting, biodistribution and antifibrotic efficacy of tanshinone IIA loaded globin nanoparticles. Eur J Pharm Sci 73:35–43

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Luque J, Ros J, Fernández-Varo G et al (2008) Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. J Pharmacol Exp Ther 324(2):475–483

    Article  PubMed  CAS  Google Scholar 

  • Mussi SV, Torchilin VP (2013) Recent trends in the use of lipidic nanoparticles as pharmaceutical carriers for cancer therapy and diagnostics. J Mater Chem B 1(39):5201

    Article  CAS  PubMed  Google Scholar 

  • Nakamura I, Zakharia K, Banini BA et al (2014) Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling. PLoS One 9(4):e92273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oró D, Yudina T, Fernández-Varo G et al (2016) Cerium oxide nanoparticles reduce steatosis, portal hypertension and display antiinflammatory properties in rats with liver fibrosis. J Hepatol 64(3):691–698

    Article  PubMed  CAS  Google Scholar 

  • Pan TL, Wang PW, Hung CF et al (2016) The impact of retinol loading and surface charge on the hepatic delivery of lipid nanoparticles. Colloids Surf B Biointerfaces 141:584–594

    Article  CAS  PubMed  Google Scholar 

  • Pinter M, Sieghart W, Reiberger T et al (2012) The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma – a pilot study. Aliment Pharmacol Ther 35:83–91

    Article  CAS  PubMed  Google Scholar 

  • Puche JE, Saiman Y, Friedman SL (2013) Hepatic stellate cells and liver fibrosis. Compr Physiol 3(4):1473–1492

    Article  PubMed  Google Scholar 

  • Qiang G, Yang X, Xuan Q et al (2014) Salvianolic acid a prevents the pathological progression of hepatic fibrosis in high-fat diet-fed and streptozotocin-induced diabetic rats. Am J Chin Med 42(5):1183–1198

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran P, Pellicoro A, Vernon MA et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 109(46):E3186–E3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safer AM, Hanafy NA, Bharali DJ, Cui H, Mousa SA (2015a) Effect of green tea extract encapsulated into chitosan nanoparticles on hepatic fibrosis collagen fibers assessed by atomic force microscopy in rat hepatic fibrosis model. J Nanosci Nanotechnol 15(9):6452–6459

    Article  CAS  PubMed  Google Scholar 

  • Safer AM, Sen A, Hanafy NA, Mousa SA (2015b) Quantification of the healing effect in hepatic fibrosis induced by chitosan nano-encapsulated green tea in rat model. J Nanosci Nanotechnol 15(12):9918–9924

    Article  CAS  PubMed  Google Scholar 

  • Schiborr C, Kocher A, Behnam D et al (2014) The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 58(3):516–527

    Article  CAS  PubMed  Google Scholar 

  • Schuppan D (1990) Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins. Semin Liver Dis 10(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO (2018) Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol 68–69:435–451

    Article  PubMed  CAS  Google Scholar 

  • Shangguan M, Lu Y, Qi J et al (2014) Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin. J Biomater Appl 28(6):887–896

    Article  PubMed  CAS  Google Scholar 

  • Sudha PN, Rose MH (2014) Beneficial effects of hyaluronic acid. Adv Food Nutr Res 72:137–176

    Article  CAS  PubMed  Google Scholar 

  • Sung YC, Liu YC, Chao PH et al (2018) Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 8(4):894–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas RG, Moon MJ, Kim JH, Lee JH, Jeong YY (2015) Effectiveness of losartan-loaded Hyaluronic Acid (HA) micelles for the reduction of advanced hepatic fibrosis in C3H/HeN mice model. PLoS One 10(12):e0145512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomson J, Hargrove L, Kennedy L, Demieville J, Francis H (2017) Cellular crosstalk during cholestatic liver injury. Liver Res 1(1):26–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Toriyabe N, Sakurai Y, Kato A et al (2017) The delivery of small interfering RNA to hepatic stellate cells using a lipid nanoparticle composed of a vitamin A-scaffold lipid-like material. J Pharm Sci 106(8):2046–2052

    Article  CAS  PubMed  Google Scholar 

  • Tsai MK, Lin YL, Huang YT (2010) Effects of salvianolic acids on oxidative stress and hepatic fibrosis in rats. Toxicol Appl Pharmacol 242(2):155–164

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14(7):397–411

    Article  CAS  PubMed  Google Scholar 

  • Wallace MC, Friedman SL, Mann DA (2015) Emerging and disease-specific mechanisms of hepatic stellate cell activation. Semin Liver Dis 35(2):107–118

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao J, Zhang D et al (2010) New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J Hepatol 53:132–144

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Song X, Li Y et al (2013) Low-dose paclitaxel ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway via miR-140 upregulation. PLoS One 8(8):e70725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Pan W, Wang Y et al (2018) Enhanced efficacy of curcumin with phosphatidylserine-decorated nanoparticles in the treatment of hepatic fibrosis. Drug Deliv 25(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm A, Shepherd EL, Amatucci A et al (2016) Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation. J Pathol 239(1):109–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JJ, Tao H, Li J (2014) Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives. Expert Opin Ther Targets 18(9):1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Yoon YJ, Friedman SL, Lee YA (2016) Antifibrotic therapies: where are we now? Semin Liver Dis 36(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Younis N, Shaheen MA, Abdallah MH (2016) Silymarin-loaded Eudragit(®) RS100 nanoparticles improved the ability of silymarin to resolve hepatic fibrosis in bile duct ligated rats. Biomed Pharmacother 81:93–103

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Duan J, Li Y et al (2017) Silica nanoparticles induce liver fibrosis via TGF-β1/Smad3 pathway in ICR mice. Int J Nanomedicine 12:6045–6057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang C, Zha Y et al (2015) Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy. ACS Nano 9(3):2405–2419

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Dang Z, Xu S, Chong S (2017) Heat shock protein 47 effects on hepatic stellate cell-associated receptors in hepatic fibrosis of Schistosomajaponicum-infected mice. Biol Chem 398(12):1357–1366

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhong DW, Wang QW, Miao XY, Xu XD (2010) Paclitaxel ameliorates fibrosis in hepatic stellate cells via inhibition of TGF-beta/Smad activity. World J Gastroenterol 16(26):3330–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devaraj, E., Rajeshkumar, S. (2020). Nanomedicine for Hepatic Fibrosis. In: Shukla, A. (eds) Nanoparticles and their Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0391-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0391-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0390-0

  • Online ISBN: 978-981-15-0391-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics