Advertisement

Dynamics Modeling

  • Panfeng HuangEmail author
  • Fan Zhang
Chapter
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

Research on space robotics [1, 2] has drawn much attention in recent years and tethered space system [3, 4, 5] is one of the current hot spots in the field of space robotics. Space Tethered Formation System is a kind of tethered space system, which presents many attractive and potential advantages in space applications.

References

  1. 1.
    Xu W, Peng J, Liang B et al (2016) Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Trans Aerosp Electron Syst 52(1):85–98CrossRefGoogle Scholar
  2. 2.
    Peng J, Xu W, Wang Z et al (2013) Dynamic analysis of the compounded system formed by dual-arm space robot and the captured target. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO). IEEEGoogle Scholar
  3. 3.
    Wen H, Zhu Z, Jin D et al (2015) Space tether deployment control with explicit tension constraint and saturation function. J Guid Control Dyn 39(4):916–921CrossRefGoogle Scholar
  4. 4.
    Wen H, Zhu Z, Jin D et al (2016) Tension control of space tether via online quasi-linearization iterations. Adv Space Res 57(3):754–763CrossRefGoogle Scholar
  5. 5.
    Wen H, Zhu Z, Jin D et al (2016) Constrained tension control of a tethered space-tug system with only length measurement. Acta Astronaut 119:110–117CrossRefGoogle Scholar
  6. 6.
    Nakaya K, Matunaga S (2005) On attitude maneuver of spinning tethered formation flying based on virtual structure method. In: AIAA guidance, navigation, and control conferenceGoogle Scholar
  7. 7.
    Williams P (2006) Optimal deployment/retrieval of a tethered formation spinning in the orbital plane. J Spacecr Rocket 43(3):638–650CrossRefGoogle Scholar
  8. 8.
    Pizarro-Chong A, Misra AK (2008) Dynamics of multi-tethered satellite formations containing a parent body. Acta Astronaut 63(11):1188–1202 CrossRefGoogle Scholar
  9. 9.
    Misra AK, Amier Z, Modi VJ (1988) Attitude dynamics of three-body tethered systems. Acta Astronaut 17(10):1059–1068CrossRefGoogle Scholar
  10. 10.
    Keshmiri M, Misra AK, Modi VJ (1996) General formulation for n-body tethered satellite system dynamics. J Guid Control Dyn 19(1):75–83CrossRefGoogle Scholar
  11. 11.
    Lorenzini EC (1987) A three-mass tethered system for micro-g/variable-g applications. J Guid Control Dyn 10(3):242–249CrossRefGoogle Scholar
  12. 12.
    Lorenzini EC, Cosmo M, Vetrella S et al (1988) Acceleration levels on board the space station and a tethered elevator for micro and variable-gravity applications. Space Tethers Sci Space Stn Era 1:513–522Google Scholar
  13. 13.
    Breakwell JV (1981) Stability of an orbiting ring. J Guid Control Dyn 4(2):197–200CrossRefGoogle Scholar
  14. 14.
    Beletsky VV, Levin EM (1985) Stability of a ring of connected satellites. Acta Astronaut 12(10):765–769CrossRefGoogle Scholar
  15. 15.
    Menon C, Bombardelli C, Bianchini G (2005) Spinning tethered formation with self-stabilising attitude control. International Astronautical Congress, Fukuoka, JapanGoogle Scholar
  16. 16.
    Pengelley CD (1966) Preliminary survey of dynamic stability of a cable-connected spinning space station. J Spacecr Rocket 3(10):1456–1462CrossRefGoogle Scholar
  17. 17.
    Nakaya K, Matunaga S (2005) On attitude maneuver of spinning tethered formation flying based on virtual structure method. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit. San Francisco, CaliforniaGoogle Scholar
  18. 18.
    Likins PW (1973) Elements of engineering mechanics. McGraw-Hill Book Company, New YorkzbMATHGoogle Scholar
  19. 19.
    Likins PW (1965) Stability of a symmetrical satellite in attitudes fixed in an orbiting reference frame. J Astronaut Sci 12(1):18–24Google Scholar
  20. 20.
    Krieger G, Moreira A (2006) Spaceborne bi- and multistatic SAR: potentials and challenges. Proc Geosci Remote Sens Symp 153(3):184–198Google Scholar
  21. 21.
    Sun G, Zhu Z (2014) Fractional order tension control for stable and fast tethered satellite retrieval. Acta Astronaut 104(1):304–312CrossRefGoogle Scholar
  22. 22.
    Sun G, Zhu Z (2014) Fractional-order tension control law for deployment of space tether system. J Guid Control Dyn 37(6):2057–2062CrossRefGoogle Scholar
  23. 23.
    Huang P, Zhang F, Ma J et al (2015) Dynamics and configuration control of the maneuvering-net space robot system. Adv Space Res 55(4):1004–1014CrossRefGoogle Scholar
  24. 24.
    Zhai G, Qiu Y, Liang B et al (2008) Research of attitude dynamics with time-varying inertia for space net capture robot system. J Astronaut 29(4):1131–1136Google Scholar
  25. 25.
    Zhai G, Qiu Y, Liang B et al (2007) Research of capture error and error compensate for space net capture robot. In: IEEE International conference on robotics and biomimetics. ROBIO 2007. IEEEGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics, Research Center for Intelligent RoboticsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations