Skip to main content

Dynamics Modeling

  • Chapter
  • First Online:
Book cover Theory and Applications of Multi-Tethers in Space

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 427 Accesses

Abstract

Research on space robotics [1, 2] has drawn much attention in recent years and tethered space system [3,4,5] is one of the current hot spots in the field of space robotics. Space Tethered Formation System is a kind of tethered space system, which presents many attractive and potential advantages in space applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu W, Peng J, Liang B et al (2016) Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Trans Aerosp Electron Syst 52(1):85–98

    Article  Google Scholar 

  2. Peng J, Xu W, Wang Z et al (2013) Dynamic analysis of the compounded system formed by dual-arm space robot and the captured target. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO). IEEE

    Google Scholar 

  3. Wen H, Zhu Z, Jin D et al (2015) Space tether deployment control with explicit tension constraint and saturation function. J Guid Control Dyn 39(4):916–921

    Article  Google Scholar 

  4. Wen H, Zhu Z, Jin D et al (2016) Tension control of space tether via online quasi-linearization iterations. Adv Space Res 57(3):754–763

    Article  Google Scholar 

  5. Wen H, Zhu Z, Jin D et al (2016) Constrained tension control of a tethered space-tug system with only length measurement. Acta Astronaut 119:110–117

    Article  Google Scholar 

  6. Nakaya K, Matunaga S (2005) On attitude maneuver of spinning tethered formation flying based on virtual structure method. In: AIAA guidance, navigation, and control conference

    Google Scholar 

  7. Williams P (2006) Optimal deployment/retrieval of a tethered formation spinning in the orbital plane. J Spacecr Rocket 43(3):638–650

    Article  Google Scholar 

  8. Pizarro-Chong A, Misra AK (2008) Dynamics of multi-tethered satellite formations containing a parent body. Acta Astronaut 63(11):1188–1202

    Article  Google Scholar 

  9. Misra AK, Amier Z, Modi VJ (1988) Attitude dynamics of three-body tethered systems. Acta Astronaut 17(10):1059–1068

    Article  Google Scholar 

  10. Keshmiri M, Misra AK, Modi VJ (1996) General formulation for n-body tethered satellite system dynamics. J Guid Control Dyn 19(1):75–83

    Article  Google Scholar 

  11. Lorenzini EC (1987) A three-mass tethered system for micro-g/variable-g applications. J Guid Control Dyn 10(3):242–249

    Article  Google Scholar 

  12. Lorenzini EC, Cosmo M, Vetrella S et al (1988) Acceleration levels on board the space station and a tethered elevator for micro and variable-gravity applications. Space Tethers Sci Space Stn Era 1:513–522

    Google Scholar 

  13. Breakwell JV (1981) Stability of an orbiting ring. J Guid Control Dyn 4(2):197–200

    Article  Google Scholar 

  14. Beletsky VV, Levin EM (1985) Stability of a ring of connected satellites. Acta Astronaut 12(10):765–769

    Article  Google Scholar 

  15. Menon C, Bombardelli C, Bianchini G (2005) Spinning tethered formation with self-stabilising attitude control. International Astronautical Congress, Fukuoka, Japan

    Google Scholar 

  16. Pengelley CD (1966) Preliminary survey of dynamic stability of a cable-connected spinning space station. J Spacecr Rocket 3(10):1456–1462

    Article  Google Scholar 

  17. Nakaya K, Matunaga S (2005) On attitude maneuver of spinning tethered formation flying based on virtual structure method. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit. San Francisco, California

    Google Scholar 

  18. Likins PW (1973) Elements of engineering mechanics. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  19. Likins PW (1965) Stability of a symmetrical satellite in attitudes fixed in an orbiting reference frame. J Astronaut Sci 12(1):18–24

    Google Scholar 

  20. Krieger G, Moreira A (2006) Spaceborne bi- and multistatic SAR: potentials and challenges. Proc Geosci Remote Sens Symp 153(3):184–198

    Google Scholar 

  21. Sun G, Zhu Z (2014) Fractional order tension control for stable and fast tethered satellite retrieval. Acta Astronaut 104(1):304–312

    Article  Google Scholar 

  22. Sun G, Zhu Z (2014) Fractional-order tension control law for deployment of space tether system. J Guid Control Dyn 37(6):2057–2062

    Article  Google Scholar 

  23. Huang P, Zhang F, Ma J et al (2015) Dynamics and configuration control of the maneuvering-net space robot system. Adv Space Res 55(4):1004–1014

    Article  Google Scholar 

  24. Zhai G, Qiu Y, Liang B et al (2008) Research of attitude dynamics with time-varying inertia for space net capture robot system. J Astronaut 29(4):1131–1136

    Google Scholar 

  25. Zhai G, Qiu Y, Liang B et al (2007) Research of capture error and error compensate for space net capture robot. In: IEEE International conference on robotics and biomimetics. ROBIO 2007. IEEE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panfeng Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, P., Zhang, F. (2020). Dynamics Modeling. In: Theory and Applications of Multi-Tethers in Space. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0387-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0387-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0386-3

  • Online ISBN: 978-981-15-0387-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics