Distributed Deployment Control

  • Panfeng HuangEmail author
  • Fan Zhang
Part of the Springer Tracts in Mechanical Engineering book series (STME)


The TSNR is a typical distributed system with the requirement of synchronization of multi-agent (the Maneuverable Units). Meanwhile, the configurations of the communication subsystem and the sensor subsystem of four MUs are different in practical applications.


  1. 1.
    Sabatini M, Gasbarri P, Palmerini GB (2016) Elastic issues and vibration reduction in a tethered deorbiting mission. Adv Space Res 57(9):1951–1964CrossRefGoogle Scholar
  2. 2.
    Kuriki Y, Namerikawa T (2014) Consensus-based cooperative formation control with collision avoidance for a multi-UAV system. In: Proceedings of American control conference, pp 2077–2082Google Scholar
  3. 3.
    Chen T, Wen H, Hu HY, Jin DP (2016) Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly. Acta Astronaut 121:271–281CrossRefGoogle Scholar
  4. 4.
    Zhang X, Liu L, Feng G (2015) Leader–follower consensus of time-varying nonlinear multi-agent systems. Automatica 52:8–14MathSciNetCrossRefGoogle Scholar
  5. 5.
    Shi P, Shen Q (2015) Cooperative control of multi-agent systems with unknown state-dependent controlling effects. IEEE Trans Autom Sci Eng 12(3):827–834CrossRefGoogle Scholar
  6. 6.
    Li B, Hu Q, Yu Y et al (2017) Observer-based fault-tolerant attitude control for rigid spacecraft. IEEE Trans Aerosp Electron Syst 53(5):2572–2582CrossRefGoogle Scholar
  7. 7.
    Wu J, Shi Y (2011) Consensus in multi-agent systems with random delays governed by a Markov chain. Syst Control Lett 60(10):863–870MathSciNetCrossRefGoogle Scholar
  8. 8.
    Qu Z (2009) Cooperative control of dynamical systems: applications to autonomous vehicles. Springer, BerlinGoogle Scholar
  9. 9.
    Polycarpou MM, Mears MJ (1998) Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators. Int J Control 70(3):363–384MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ge SS, Wang C (2004) Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans Neural Netw 15(3):674–692CrossRefGoogle Scholar
  11. 11.
    Zhang F, Huang P (2017) Releasing dynamics and stability control of maneuverable tethered space net. IEEE/ASME Trans Mechatron 22(2):983–993CrossRefGoogle Scholar
  12. 12.
    Ge SS, Liu XM, Goh CH, Xu LG (2016) Formation tracking control of multiagents in constrained space. IEEE Trans Control Syst Technol 24(3):992–1003CrossRefGoogle Scholar
  13. 13.
    Merheb AR, Gazi V, Sezer-Uzol N (2016) Implementation studies of robot swarm navigation using potential functions and panel methods. IEEE-ASME Trans Mechatron 21(5):2556–2567CrossRefGoogle Scholar
  14. 14.
    Yao B, Tomizuka M (1997) Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica 33(5):893–900MathSciNetCrossRefGoogle Scholar
  15. 15.
    Krstic M, Kanellakopoulos I, Kokotovic PV (1995) Nonlinear and adaptive control design. Wiley, New YorkGoogle Scholar
  16. 16.
    Tao G (1997) A simple alternative to the Barbalat lemma. IEEE Trans Autom Control 42(5):698MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics, Research Center for Intelligent RoboticsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations