Skip to main content

Design of Low-Power and High-Frequency Operational Transconductance Amplifier for Filter Applications

  • Conference paper
  • First Online:
International Conference on Innovative Computing and Communications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1059))

  • 832 Accesses

Abstract

In this work, a two-stage operational transcoductance amplifier (OTA) has been designed and is used to design various active filters as an application. The main contribution of this work is in the direction of achieving high gain, high bandwidth, high PSRR, and low noise for the proposed OTA. Over the years, different methodologies have been proposed by researchers to enhance the performance of OTA. In this work, the proposed results have been analytically verified with theory and compared with the related work. In this work, 90 nm technology is used for simulations which are carried out using Tanner EDA 16.0 tool and these results are compared with related work performed using 180 nm technology. With the help of this work, a two-stage OTA can be designed having high gain, high bandwidth, high PSRR, etc., and various active filters can also be designed with the help of this OTA, for filtering purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferreira LHC, Sonkusale SR (2014) A 60 dB gain OTA operating at 0.25 V power supply in 130 nm digital CMOS process. IEEE Trans Circuits Syst I 61(6):1609–1617

    Article  Google Scholar 

  2. Nayyar A, Puri V, Nhu NG, BioSenHealth 1.0: a novel internet of medical things (IoMT)-based patient health monitoring system. In: International conference on innovative computing and communications, Proceedings of ICICC 2018, vol 1. pp 155–164. https://doi.org/10.1007/978-981-13-2324-9_16

    Google Scholar 

  3. Rajbhandari S, Singh A, Mittal M (2018) Big data in healthcare. In: International Conference on Innovative Computing and Communications, Proceedings of ICICC 2018, vol 2. pp 261–269. https://doi.org/10.1007/978-981-13-2354-6_28

    Google Scholar 

  4. Lo T, Hung C (2007) A 1 V 50 MHz pseudo differential OTA with compensation of the mobility reduction. IEEE Trans Circuits Syst II 54(12):1047–1051

    Article  Google Scholar 

  5. Ferreira LHC, Pimenta TC, Moreno RL (2007) An ultra low voltage ultra low power CMOS Miller OTA with rail-to-rail input/output swing. IEEE Trans Circuits and Syst II 54(10):843–847

    Article  Google Scholar 

  6. Zhang X, El-Masry EI (2007) A novel CMOS OTA based on body driven MOSFETs and its applications in OTA-C filters. IEEE Trans Circuits and Syst I 54(6):1204–1212

    Article  Google Scholar 

  7. Sinencio ES, Martinez JS (2000) CMOS transconductance amplifiers, architectures and active filters, A tutorial. IEEE Proc Circuits, Devices Syst 147(1):3–12

    Article  Google Scholar 

  8. Lin T, Wu C, Tsai M (2007) A 0.8 V 0.25 mW current mirror OTA with 160 MHz GBW in 0.18 µm CMOS. IEEE Trans Circuits Syst II 54(2):131–135

    Article  Google Scholar 

  9. Grasso D, Palumbo G, Pennisi S (2006) Three stage CMOS OTA for large capacitive loads with efficient frequency compensation scheme. IEEE Trans Circuits Syst II 53(10):1044–1048

    Article  Google Scholar 

  10. Baruqui FAP, Petraglia A (2006) Linear tunable CMOS OTA with constant dynamic range using source degenerated current mirrors. IEEE Trans Circuits and Syst I 53(9):797–801

    Article  Google Scholar 

  11. Huang W, Sinencio ES (2006) Robust highly linear high frequency CMOS OTA with IM3 below 70 dB at 26 MHz. IEEE Trans Circuits Syst I Fundam Theory Appl 53(7):1433–1447

    Article  Google Scholar 

  12. Lewinski A, Martinez JS (2004) OTA linearity enhancement technique for high frequency applications with IM3 below 65 dB. IEEE Trans Circuits Syst II 51(10):542–548

    Article  Google Scholar 

  13. Kuhn W, Stephenson F, Riad AE (1996) A 200 MHz CMOS Q enhanced LC bandpass filter. IEEE J Solid State Circ 31(8):1112–1122

    Article  Google Scholar 

  14. Taiwan Semiconductor Manufacturing Company (TSMC) Limited (2008) TSMC platform technology portfolio. Online: http://www.tsmc.com/english/b_technology/b01_platform/b01_platform.htm

  15. International Business Machines Corp. (IBM) (2008) IBM Semiconductor solutions. Online: http://www-03.ibm.com/technology/ges/semiconductor

  16. Burghartz JN, Hargrove M, Webster CS, Groves RA, Keene M, Jenkins KA et al (2000) RF potential of a 0.18 µm CMOS logic device technology. IEEE Trans Electron Devices 47(4):864–870

    Article  Google Scholar 

  17. Martin JL, Baswa S, Angulo JR, Carvajal RG (2005) Low voltage super class-AB CMOS OTA cells with very high slew rate and power efficiency. IEEE J Solid State Circ 40(5):1068–1077

    Article  Google Scholar 

  18. Lee H (1998) The design of CMOS radio-frequency integrated circuits. Cambridge University Press, Cambridge, UK

    Google Scholar 

  19. Sinencio ES, Andreou AG (1999) Low voltage/low power integrated circuit and systems. IEEE Press, New York

    Google Scholar 

  20. Baswa S, Martin AJL, Angulo JR, Carvajal RG (2004) Low voltage micropower super class AB CMOS OTA. Electron Lett 40(4):216–217

    Article  Google Scholar 

  21. Baswa S, Martin AJL, Carvajal RG, Angulo JR (2004) Low voltage power efficient adaptive biasing for CMOS amplifiers and buffers. Electron Lett 40(4):217–219

    Article  Google Scholar 

  22. Zhao X, Zhang Q, Deng M (2015) Super class-AB bulk-driven OTAs with improved slew rate. Electron Lett 51(19):1488–1489

    Article  Google Scholar 

  23. Thyagarajan SV, Pavan S, Sankar P (2010) Low distortion active filters using the Gm-assisted OTA-RC technique. In: 36th European solid state circuits conference, Seville, 14–16 September 2010, pp 162–165

    Google Scholar 

  24. Hao ZC, Hong JS (2010) UWB bandpass filter using cascaded miniature high-pass and low-pass filters with multilayer liquid crystal polymer technology. IEEE Trans Microwave Theory Tech 58(4)

    Google Scholar 

  25. Lee MY, Lee YH (2014) A 1.8-V operation analog CMOS baseband for direct conversion receiver of IEEE 802.11a. Int J Control Automation 7(9):155–164

    Article  Google Scholar 

  26. Fathelbab WM, Jaradat HM, Reynolds D (2010) Two novel classes of band-reject filters realizing broad upper pass bandwidth. In: IEEE MTT-S international microwave symposium digest, Anaheim, CA, 23–28 May 2010, pp 217–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Nandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nandal, A., Dhaka, A., Kumar, N., Hadzieva, E. (2020). Design of Low-Power and High-Frequency Operational Transconductance Amplifier for Filter Applications. In: Khanna, A., Gupta, D., Bhattacharyya, S., Snasel, V., Platos, J., Hassanien, A. (eds) International Conference on Innovative Computing and Communications. Advances in Intelligent Systems and Computing, vol 1059. Springer, Singapore. https://doi.org/10.1007/978-981-15-0324-5_5

Download citation

Publish with us

Policies and ethics