Skip to main content

Self-Avoiding Walks on the UIPQ

  • Conference paper
  • First Online:
Sojourns in Probability Theory and Statistical Physics - III

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 300))

Abstract

We study an annealed model of Uniform Infinite Planar Quadrangulation (UIPQ) with an infinite two-sided self-avoiding walk (SAW), which can also be described as the result of glueing together two independent uniform infinite quadrangulations of the half-plane (UIHPQs). We prove a lower bound on the displacement of the SAW which, combined with the estimates of [15], shows that the self-avoiding walk is diffusive. As a byproduct this implies that the volume growth exponent of the lattice in question is 4 (as is the case for the standard UIPQ); nevertheless, using our previous work [9] we show its law to be singular with respect to that of the standard UIPQ, that is – in the language of statistical physics – the fact that disorder holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Remark that this notation is not coherent with that of [9], where we denoted by \(\mathcal {H}_\infty \) an object with a boundary that is not necessarily simple, and by \(\widetilde{\mathcal {H}}_\infty \) the one that is central to this paper, obtained from \(\mathcal {H}_\infty \) by a pruning procedure. Since the general boundary UIHPQ will make no appearance in this paper, we shall drop the tilde with no fear of confusion.

  2. 2.

    Actually the works [9, 24, 25] show a convergence in distribution and one needs to prove uniform integrability to be able to pass to the expectation. We do not give the details since the actual proof bypasses this technical issue.

  3. 3.

    Notice that this is in contrast with the notation of [9], where a distinction needed to be made between quadrangulations with a general boundary and ones whose boundary was required to be simple, which we usually signalled with a “tilde” over the relevant symbol.

References

  1. Angel, O.: Scaling of percolation on infinite planar maps, I. arXiv:0501006 (2005)

  2. Angel, O.: Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13(5), 935–974 (2003)

    Article  MathSciNet  Google Scholar 

  3. Angel, O., Curien, N.: Percolations on infinite random maps, half-plane models. Ann. Inst. H. Poincaré Probab. Statist. 51(2), 405–431 (2014)

    Article  Google Scholar 

  4. Angel, O., Hutchcroft, T., Nachmias, A., Ray, G.: Unimodular hyperbolic triangulations: circle packing and random walk. Inventiones Mathematicae 206(1), 229–268 (2016)

    Article  MathSciNet  Google Scholar 

  5. Angel, O., Nachmias, A., Ray, G.: Random walks on stochastic hyperbolic half planar triangulations. Random Struct. Algorithms 49(2), 213–234 (2016)

    Article  MathSciNet  Google Scholar 

  6. Angel, O., Schramm, O.: Uniform infinite planar triangulation. Commun. Math. Phys. 241(2–3), 191–213 (2003)

    Article  MathSciNet  Google Scholar 

  7. Bouttier, J.: Physique statistique des surfaces aleatoires et combinatoire bijective des cartes planaires. Ph.D. thesis, Universite Pierre et Marie Curie (2005). https://tel.archives-ouvertes.fr/tel-00010651/

  8. Bouttier, J., Guitter, E.: Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A 42(46), 465208 (2009)

    Article  MathSciNet  Google Scholar 

  9. Caraceni, A., Curien, N.: Geometry of the uniform infinite half-planar quadrangulation. Random Struct. Algorithms 52(3), 454–494 (2018)

    Article  MathSciNet  Google Scholar 

  10. Chassaing, P., Durhuus, B.: Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34(3), 879–917 (2006)

    Article  MathSciNet  Google Scholar 

  11. Curien, N., Le Gall, J.F.: Scaling limits for the peeling process on random maps. Ann. Inst. H. Poincaré Probab. Statist. 53(1), 322–357 (2017)

    Article  MathSciNet  Google Scholar 

  12. Curien, N., Le Gall, J.F.: The Brownian plane. J. Theor. Probab. 27(4), 1249–1291 (2014)

    Article  MathSciNet  Google Scholar 

  13. Curien, N., Le Gall, J.F.: First-passage percolation and local perturbations on random planar maps. Ann. Sci. Ecole Normale Supérieure, to appear

    Google Scholar 

  14. Curien, N., Ménard, L., Miermont, G.: A view from infinity of the uniform infinite planar quadrangulation. Lat. Am. J. Probab. Math. Stat. 10(1), 45–88 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Curien, N., Miermont, G.: Uniform infinite planar quadrangulations with a boundary. Random Struct. Alg. 47(1), 30–58 (2015)

    Article  MathSciNet  Google Scholar 

  16. Duplantier, B.: Conformal random geometry. In: Mathematical Statistical Physics, pp. 101–217. Elsevier B. V., Amsterdam (2006)

    Google Scholar 

  17. Gurel-Gurevich, O., Nachmias, A.: Recurrence of planar graph limits. Ann. Maths 177(2), 761–781 (2013). http://arxiv.org/abs/1206.0707v1

  18. Gwynne, E., Miller, J.: Convergence of the self-avoiding walk on random quadrangulations to SLE\(_{8/3}\) on \(\sqrt{8/3}\)-Liouville quantum gravity. arxiv:1608.00956

  19. Gwynne, E., Miller, J.: Metric gluing of Brownian and \(\sqrt{8/3}\)-Liouville quantum gravity surfaces. arxiv:1608.00955

  20. Gwynne, E., Miller, J.: Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov–Hausdorff–Prokhorov-uniform topology. Electron. J. Probab. 22 (2017)

    Google Scholar 

  21. Krikun, M.: Local structure of random quadrangulations. arXiv:0512304

  22. Lacoin, H.: Non-coincidence of quenched and annealed connective constants on the supercritical planar percolation cluster. Probab. Theory Related Fields 159(3), 777–808 (2014)

    Article  MathSciNet  Google Scholar 

  23. Le Doussal, P., Machta, J.: Self-avoiding walks in quenched random environments. J. Stat. Phys. 64, 541–578 (1991)

    Article  Google Scholar 

  24. Le Gall, J.F., Ménard, L.: Scaling limits for the uniform infinite quadrangulation. Illinois J. Math. 54(3), 1163–1203 (2012)

    Article  MathSciNet  Google Scholar 

  25. Le Gall, J.F., Ménard, L.: Scaling limits for the uniform infinite quadrangulation (erratum). https://www.math.u-psud.fr/~jflegall/scaling-infinite-Erratum.pdf

  26. Lyons, R.: Strong laws of large numbers for weakly correlated random variables. Michigan Math. J. 35(3), 353–359 (1988)

    Article  MathSciNet  Google Scholar 

  27. Veraverbeke, N.: Asymptotic behaviour of Wiener-Hopf factors of a random walk. Stoch. Process. Appl. 5, 27–37 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Jérémie Bouttier for fruitful discussion as well as for providing us with an alternative derivation of (1) based on [8]. We are also grateful to Jason Miller for a discussion about [18, 19] and Sect. 5. Figure 1 has been done via Timothy Budd’s software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Curien .

Editor information

Editors and Affiliations

Additional information

We dedicate this work to Chuck Newman on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caraceni, A., Curien, N. (2019). Self-Avoiding Walks on the UIPQ. In: Sidoravicius, V. (eds) Sojourns in Probability Theory and Statistical Physics - III. Springer Proceedings in Mathematics & Statistics, vol 300. Springer, Singapore. https://doi.org/10.1007/978-981-15-0302-3_5

Download citation

Publish with us

Policies and ethics