Skip to main content

Differential Geometry for Model Independent Analysis of Images and Other Non-Euclidean Data: Recent Developments

  • Conference paper
  • First Online:
Sojourns in Probability Theory and Statistical Physics - II

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 299))

  • 444 Accesses

Abstract

This article provides an exposition of recent methodologies for nonparametric analysis of digital observations on images and other non-Euclidean objects. Fréchet means of distributions on metric spaces, such as manifolds and stratified spaces, have played an important role in this endeavor. Apart from theoretical issues of uniqueness of the Fréchet minimizer and the asymptotic distribution of the sample Fréchet mean under uniqueness, applications to image analysis are highlighted. In addition, nonparametric Bayes theory is brought to bear on the problems of density estimation and classification on manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afsari, B.: Riemannian \(l^p\) center of mass: existence, uniqueness, and convexity. Proc. Am. Math. Soc. 139(2), 655–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Aggarwal, G., Chowdhury, A., Chellappa, R.: A system identification approach for video-based face recognition. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 4, pp. 175–178 (2004)

    Google Scholar 

  • Alexandrov, A.D.: Uber eine verallgemeinerung der riemannschen geometrie. Schr. Forschungsinst. Math. 33–84 (1957)

    Google Scholar 

  • Arsigny, A., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  • Bandulasiri, A., Bhattacharya, R., Patrangenaru, V.: Nonparametric inference for extrinsic means on size-and-(reflection)-shape manifolds with applications in medical imaging. J. Multivar. Anal. 100(9), 1867–1882 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Bandulasiri, A., Patrangenaru, V.: Algorithms for nonparametric inference on shape manifolds. In: Proceedings of JSM 2005, pp. 1617–1622 (2005)

    Google Scholar 

  • Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  • Bhattacharya, A.: Statistical analysis on manifolds: a nonparametric approach for inference on shape spaces. Sankhya 70, 1–43 (2008)

    MathSciNet  Google Scholar 

  • Bhattacharya, A., Bhattacharya, R.: Statistics on Riemannian manifolds: asymptotic distribution and curvature. Proc. Am. Math. Soc. 136, 2957–2967 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, A., Bhattacharya, R.: Nonparametric Inference on Manifolds: With Applications to Shape Spaces. IMS Monograph, vol. 2. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  • Bhattacharya, A., Dunson, D.: Nonparametric Bayesian density estimation on manifolds with applications to planar shapes. Biometrika 97, 851–865 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, R.: On the uniqueness of intrinsic mean (2007, Unpublished manuscript)

    Google Scholar 

  • Bhattacharya, R.: A nonparametric theory of statistics on manifolds. In: Eichelsbacher, P., Elsner, G., Kösters, H., Löwe, M., Merkl, F., Rolles, S. (eds.) Limit Theorems in Probability, Statistics and Number Theory. Springer Proceedings in Mathematics & Statistics, vol. 42, pp. 173–205. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  • Bhattacharya, R., Lin, L.: Omnibus CLTs for Fréchet means and nonparametric inference on non-Euclidean spaces. arXiv:1306.5806 (2013)

  • Bhattacharya, R., Lin, L.: Omnibus CLTs for Fréchet means and nonparametric inference on non-Euclidean spaces. Proc. Am. Math. Soc. 145, 413–428 (2017)

    Article  MATH  Google Scholar 

  • Bhattacharya, R.N., Lin, L., Patrangenaru, V.: A Course in Mathematical Statistics and Large Sample Theory. Springer Texts in Statistics. Springer, New York (2016)

    Book  MATH  Google Scholar 

  • Bhattacharya, R., Oliver, R.: Nonparametric analysis of non-Euclidean data on shapes and images. Sankhya A 81(1), 1–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, R.N., Patrangenaru, V.: Nonparametric estimation of location and dispersion on Riemannian manifolds. J. Stat. Plan. Infer. 108, 22–35 (2002). Volume in honor of the 80th birthday of Professor C.R. Rao

    Article  MATH  Google Scholar 

  • Bhattacharya, R.N., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann. Stat. 31, 1–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhattacharya, R.N., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds-II. Ann. Stat. 33, 1225–1259 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  • Boothby, W.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. Academic Press, New York (1986)

    MATH  Google Scholar 

  • Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics. Elsevier Science, Amsterdam (1984)

    MATH  Google Scholar 

  • Demmel, J., Eisenstat, S., Gilbert, J., Li, X., Liu, J.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20, 720–755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Dey, T.K., Li, K.: Persistence-based handle and tunnel loops computation revisited for speed up. Comput. Graph. 33(3), 351–358 (2009). IEEE International Conference on Shape Modelling and Applications

    Article  Google Scholar 

  • Dey, T.K., Li, K., Sun, J., Cohen-Steiner, D.: Computing geometry-aware handle and tunnel loops in 3D models. ACM Trans. Graph. 27(3), 45:1–45:9 (2008)

    Article  Google Scholar 

  • Do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  • Dryden, I., Kume, A., Le, H., Wood, A.T.: A multi-dimensional scaling approach to shape analysis. Biometrika 95(4), 779–798 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, New York (1998)

    MATH  Google Scholar 

  • Ellingson, L., Patrangenaru, V., Ruymgaart, F.: Nonparametric estimation of means on Hilbert manifolds and extrinsic analysis of mean shapes of contours. J. Multivar. Anal. 122, 317–333 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson, T.S.: Prior distributions on spaces of probability measures. Ann. Stat. 2, 615–629 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, N., Lewis, T., Embleton, B.: Statistical Analysis of Spherical Data. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  • Fisher, R.: Dispersion on a sphere. Proc. R. Soc. Lond. Ser. A 217, 295–305 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  • Fréchet, M.: Lés élements aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10, 215–310 (1948)

    MathSciNet  MATH  Google Scholar 

  • Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Universitext. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  • Ghosh, J., Ramamoorthi, R.: Bayesian Nonparametrics. Springer Series in Statistics. Springer, New York (2003)

    MATH  Google Scholar 

  • Goodall, C.: Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. Ser. B (Methodol.) 53(2), 285–339 (1991)

    MathSciNet  MATH  Google Scholar 

  • Goodlett, C., Davis, B., Jean, R., Gilmore, J., Gerig, G.: Improved correspondence for DTI population studies via unbiased atlas building. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), vol. 4191, pp. 260–267 (2006)

    Google Scholar 

  • Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Inventiones mathematicae 110(1), 1–22 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. ACM Trans. Graph. 22(3), 358–363 (2003)

    Article  Google Scholar 

  • Gromov, M.: Structures métriques pour les variétés Rriemanniennes. Textes mathématiques. CEDIC/Fernand Nathan (1981)

    Google Scholar 

  • Hotelling, H.: The generalization of student’s ratio. Ann. Math. Stat. 2(3), 360–378 (1931)

    Article  MATH  Google Scholar 

  • Hotz, T., Huckemann, S.: Intrinsic means on the circle: uniqueness, locus and asymptotics. Ann. Inst. Stat. Math. 67(1), 177–193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Hotz, T., Skwerer, S., Huckemann, S., Le, H., Marron, J. S., Mattingly, J. C., Miller, E., Nolen, J., Owen, M., Patrangenaru, V.: Sticky central limit theorems on open books. In: Annals of Applied Probability, pp. 2238–2258 (2013)

    Google Scholar 

  • Huang, C., Styner, M., Zhu, H.: Penalized mixtures of offset-normal shape factor analyzers with application in clustering high-dimensional shape data. J. Am. Stat. Assoc. (2015)

    Google Scholar 

  • Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: geodesic PCA for Riemannian manifolds modulo isometric Lie group actions (with discussions). Statist. Sinica 20, 1–100 (2010)

    MathSciNet  MATH  Google Scholar 

  • Irving, E.: Paleomagnetism and Its Application to Geological and Geographical Problems. Wiley, New York (1964)

    Google Scholar 

  • Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. Comput. Aided Des. 39(5), 398–407 (2007)

    Article  Google Scholar 

  • Jones, P.W., Maggioni, M., Schul, R.: Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels. Proc. Nat. Acad. Sci. 105(6), 1803–1808 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kac, M.: Can one hear the shape of a drum? Am. Math. Monthly 73(4), 1–23 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  • Karcher, H.: Riemannian center of mas and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–554 (1977)

    Article  MATH  Google Scholar 

  • Kendall, D., Barden, D., Carne, T., Le, H.: Shape and Shape Theory. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  • Kendall, D.G.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, D.G.: A survey of the statistical theory of shape. Stat. Sci. 4, 87–120 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, W.: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. Lond. Math. Soc. 61, 371–406 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, W., Le, H.: Limit theorems for empirical Fréchet means of independent and non-identically distributed manifold-valued random variables. Braz. J. Probab. Stat. 25(3), 323–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kindlmann, G., Tricoche, X., Westin, C.-F.: Delineating white matter structure in diffusion tensor MRI with anisotropy creases. Med. Image Anal. 11(5), 492–502 (2007)

    Article  Google Scholar 

  • Le, H.: Locating Fréchet means with application to shape spaces. Adv. Appl. Prob. 33, 324–338 (2001)

    Article  MATH  Google Scholar 

  • Lehmann, E.: Testing Statistical Hypotheses. Wiley Series in Probability and Mathematical Statistics. Probability and Mathematical Statistics. Wiley (1959)

    Google Scholar 

  • Ma, Y., Soatto, S., Kosecká, J., Sastry, S.: An Invitation to 3-D Vision: From Images to Geometric Models. Interdisciplinary Applied Mathematics. Springer, New York (2005)

    MATH  Google Scholar 

  • Mardia, K., Jupp, P.: Directional Statistics. Wiley, New York (2000)

    MATH  Google Scholar 

  • Mardia, K., Patrangenaru, V.: Directions and projective shapes. Ann. Stat. 33, 1666–1699 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • McKilliam, R.G., Quinn, B.G., Clarkson, I.V.L.: Direction estimation by minimum squared arc length. IEEE Trans. Signal Process. 60(5), 2115–2124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J.: Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat. Acad. Sci. 51(4), 542 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor, J.: Topology from the Differentiable Viewpoint. University Press of Virginia, Charlottesville (1965)

    MATH  Google Scholar 

  • Morra, J., Tu, Z., Apostolova, L., Green, A., Avedissian, C., Madsen, S., Parikshak, N., Toga, A., Jack Jr., C., Schuff, N., Weiner, M., Thompson, P.: Automated mappings of hippocampal atrophyin 1-year repeat MRI data from 490 subjects with alzheimers disease, mild cognitive impairment, and elderly controls. Neuroimage S45, 3–S15 (2000)

    Google Scholar 

  • Patrangenaru, V., Liu, X., Sugathadasa, S.: A nonparametric approach to 3D shape analysis from digital camera images – I. J. Multivar. Anal. 101(1), 11–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Pelletier, B.: Kernel density estimation on Riemannian manifolds. Stat. Prob. Lett. 73, 297–304 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay, J.R.: Current status of cognitive-behavioral therapy as a psychosocial treatment for adult attention-deficit/hyperactivity disorder. Curr. Psychiatry Rep. 9(5), 427–433 (2007)

    Article  Google Scholar 

  • Reshetnyak, Y.: Non-expansive maps in a space of curvature no greater than k. Sibirsk. Mat. Zh. 9, 918–927 (1968)

    MathSciNet  Google Scholar 

  • Reuter, M.: Laplace Spectra for Shape Recognition. Books on Demand GmbH (2006)

    Google Scholar 

  • Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace-Beltrami operators for shape analysis and segmentation. Comput. Graph. 33(3), 381–390 (2009). IEEE International Conference on Shape Modelling and Applications

    Article  Google Scholar 

  • Rosenberg, S.: The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds. EBSCO Ebook Academic Collection. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  • Sethuraman, J.: A constructive definition of Dirichlet priors. Statist. Sinica 4, 639–50 (1994)

    MathSciNet  MATH  Google Scholar 

  • Shamir, A.: Segmentation and shape extraction of 3D boundary meshes. In: Wyvill, B., Wilkie, A. (eds.) Eurographics 2006 - State of the Art Reports. The Eurographics Association (2006)

    Google Scholar 

  • Sparr, G.: Depth-computations from polyhedral images. In: Sandimi, G. (ed.) Proceedings of the 2nd European Conference on Computer Vision, pp. 378–386. Springer (1992). Also in Image and Vision Computing, 10, 683–688

    Google Scholar 

  • Sturm, K.: Probability Measures on Metric Spaces of Nonpositive Curvature. Preprint. SFB 611 (2003)

    Google Scholar 

  • Sugathadasa, S.: Affine and Projective Shape Analysis with Applications. Ph.D. dissertation, Texas Tech University (2006)

    Google Scholar 

  • Veeraraghavan, A., Roy-Chowdhury, A., Chellappa, R.: Matching shape sequences in video with applications in human movement analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1896–1909 (2005)

    Article  Google Scholar 

  • Watson, G.S.: Statistics on Spheres. University Arkansas Lecture Notes in the Mathematical Sciences, vol. 6. Wiley, New York (1983)

    MATH  Google Scholar 

  • Weyl, H.: Ueber die asymptotische verteilung der eigenwerte. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 110–117 (1911)

    Google Scholar 

  • Yuan, Y., Zhu, H., Lin, W., Marron, J.S.: Local polynomial regression for symmetric positive definite matrices. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 697–719 (2012)

    Google Scholar 

  • Zelditch, S.: Spectral determination of analytic bi-axisymmetric plane domains. Geom. Funct. Anal. GAFA 10(3), 628–677 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Ziezold, H.: On expected figures and a strong law of large numbers for random elements in quasi-metric spaces. In: Transactions of the Seventh Prague Conference on Information Theory, Statistical Functions, Random Processes and of the Eighth European Meeting of Statisticians, A, pp. 591–602 (1977). (Tech. Univ. Prague, Prague, 1974)

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge support for this article from NSF grants DMS 1811317, CAREER 1654579 and IIS 1663870.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabi Bhattacharya .

Editor information

Editors and Affiliations

Additional information

In celebration of Chuck’s 70th Birthday

A Appendix on Riemannian Manifolds

A Appendix on Riemannian Manifolds

Often the manifold M in applications has a natural Riemannian metric tensor g. That is, it is given an inner product \(\langle , \rangle _p\) on the tangent space \(T_pM\) at p, which is smoothly defined. In local coordinates in \(U_p\) given by \(\psi _p(\cdot )=x= (x_1,\ldots ,x_d) \in B_p\), the functions \( (g_{ij})(x) = \langle E_i,E_j\rangle _p\), with \(E_i= \mathrm {d}\psi _p^{01} (\partial /\partial x_i)\) (\(i,j =1,\ldots ,d\)), are smooth in \(B_p\). This allows one to measure the length of a smooth arc \(\gamma \) joining any two points q, \(q' \) in \(U_p\), namely, \(\int _{[a,b]}|\mathrm {d}x(t)/\mathrm {d}t| \mathrm {d}t\), \(\gamma (a) = q\), \(\gamma (b) = q',\) \(x(t) = \psi _p\circ \gamma (t)\). Here \(|\mathrm {d}x(t)/\mathrm {d}t|^2= \langle \mathrm {d}x(t)/\mathrm {d}t, \mathrm {d}x(t)/\mathrm {d}t\rangle _p\), with \(\mathrm {d}x(t)/\mathrm {d}t\) expressed in the local frame \(E_i \)(\(i=1,\ldots , d\)). One may also write \(\mathrm {d}x(t)/\mathrm {d}t\) as \(\mathrm {d}\gamma (t)/ \mathrm {d}t\). Using the compatibility condition (ii) above one now defines the length of a smooth arc joining any two points in M. The geodesic distance \(\rho _g(p,q)\) between p and q is the minimum of lengths of all smooth arcs joining p and q. A standard parametrization of a curve is its arc length s: \(s=\int _{[a,t]} |\mathrm {d}\gamma (u)/\mathrm {d}u| \mathrm {d}u\). In this parametrization of curves, one has \(|\mathrm {d}\gamma (t)/\mathrm {d}t| =1\). We will adopt this so called unit speed parametrization unless otherwise specified. The property of local minimization of arc lengths yields a first order condition on the velocity \(\mathrm {d}\gamma (t)/\mathrm {d}t\) of the minimizing curve \(\gamma \) at t: the acceleration along \(\gamma \) is zero at every parameter join t. If M is a submanifold ((hyper) surface) of an Euclidean space \(\mathbb {R}^N\), then the second derivative \(\mathrm {d}^2\gamma (t)/\mathrm {d}t^2\) is well defined, but in general does not belong to the tangent space of M at \(\gamma (t)\). By ‘acceleration’ one means the orthogonal projection of the vector \(\mathrm {d}^2\gamma (t)/\mathrm {d}t^2\) onto the tangent space of M at \(\gamma (t)\). This projection is called the covariant derivative of the velocity and denoted \((\mathrm {D}/\mathrm {d}t) \mathrm {d}\gamma (t)/\mathrm {d}t\). The “zero acceleration” of a geodesic \(\gamma \) means \((\mathrm {D}/\mathrm {d}t) \mathrm {d}\gamma (t)/\mathrm {d}t=0\). On a general differentiable manifold, which is not given explicitly as a submanifold, there is no “outside”. The proper extension of the above notion of covariant derivative by Levi–Civita, using a notion known as affine connection, for all differentiable manifolds was a milestone in the development of differential geometry (See, e.g., Do Carmo 1992 Chapter 2).

In local coordinates the equation for a geodesic is a second order ordinary differential equation. By the standard existence theorem for ordinary differential equations, a geodesic \(\gamma \) is uniquely determined on a maximal interval (ab) (\(-\infty \le a<b<\infty \)), given an initial point \(\gamma (0) =p\) and an velocity \((\mathrm {d}\gamma (t)/\mathrm {d}t)_{t=0} = v\). According to a result of Hopf and Rinow (Do Carmo 1992, Chapter 7), the geodesics can be extended indefinitely, (i.e., \(a =-\infty \) and \(b= \infty \)), i.e., it is geodesically complete, if and only if \((M,\rho _g)\) is a complete metric space; this in turn is equivalent to the topological condition (2). In particular, all compact Riemannian manifolds are geodesically complete. In most of the applications in this article M is compact.

On a complete Riemannian manifold, a geodesic \(\gamma (t) = \gamma (t;p,v)\), \(t\ge 0\), in the direction v, is completely determined by an initial point \(p= \gamma (0)\), and an initial velocity \(v=(\mathrm {d}\gamma (t)/\mathrm {d}t)t=0\). A cut point of p of the geodesic \(\gamma \) along v is \(\gamma (r(v); p,v)\), where r(v) is the supremum of all \(t_0\) such that \(\gamma \) is distance minimizing between \(p=\gamma (0)\) and \(\gamma (t_0)\). The set of all cut points (along all v) is called the cut locus of p, denoted \({\text {Cut}}(p)\). The geodesic distance \(q\rightarrow \rho _g(p,q)\) may not be smooth at the cut locus \({\text {Cut}}(p)\), as Example 11 below shows. Next, define the exponential function \({\text {Exp}}_p: T_p(M) \rightarrow M: {\text {Exp}}_p (v) = \gamma (1;p,v)\) the point in M reached by the geodesic in time \(t=1\), starting at p with an initial velocity v. It is known that \({\text {Exp}}_p\) is a diffeomorphism on an open ball \(B(0:r_0)\) of \(T_p(M)\), of radius \(r_0=r_0(p)<\infty \), onto \(M\backslash \,{\text {Cut}}(p)\) (Do Carmo 1992, p. 271). Here \(r_0 = r_0(p)\) is the geodesic distance between p and \({\text {Cut}}(p)\)). The inverse map \({\text {Exp}}_p^{-1} :M\backslash \,{\text {Cut}}(p) \rightarrow {\text {Exp}}_p (B(0: r_0)\) is called the inverse exponential, or the \(\log \) map, \(\log _p\), at p. The quantity \({\text {inj}}(M) = \sup \{r_0(p); p \in M)\} \) is the injectivity radius of M. The \(\log _p\) map also provides the so called normal coordinates for a neighborhood of p.

Example 11

(Exponential and Log Maps on the Sphere \(S^d\)). Consider the unit sphere \(S^d= \{x\in \mathbb {R}^{d+1}: |x|^2 \sum _{j=1}^d (x^{(j)})^2 = 1\}\). Because \(|\gamma (t)| =1\) \(\forall t\) for a curve on \(S^d\), the tangent space at p may be identified as the set of vectors in \(\mathbb {R}^{d+1}\) orthogonal to p, \(T_p(S^d) = \{v \in \mathbb {R}^{d+1}: pv'=0\}\). Here we write p, v, etc. as row vectors. The geodesics are the big circles, so that the point reached at time one by the geodesic from p moving with an initial velocity v is the point on the big circle lying on the plane spanned by p and v at an arc distance |v|, i.e.,

$$\begin{aligned} {\text {Exp}}_p(v) = \cos (|v|)p + \sin (|v|)v/|v|,\; v \ne 0, {\text {Exp}}_p(0) = p\; (pv'=0). \end{aligned}$$
(A.1)

Also, the geodesic distance between p and q is the smaller of the lengths |v| of the two arcs joining p and q on the big circle,

$$\begin{aligned} \rho _g(p,q) = \arccos pq' \in [0, \pi ]. \end{aligned}$$
(A.2)

Note that the cut locus of p is \({\text {Cut}}(p) = \{-p\}\), and the distance between p and \(-p\) is \(\pi \), and \({\text {inj}}(S^d) = \pi \). Hence the map \(\log _p(q)\) is defined on \(S^d\backslash \{-p\} \) and obtained by solving for v the equation \(\exp _p(v) =q\). Now \(|v|= \rho _g(p,q)\). Plugging this in (A.1) (and using (A.2)), one has

$$\sqrt{[1 - (pq')^2]} v = [q - (pq')p](\arccos pq'), (p\ne q),$$

which yields

$$\begin{aligned} \log _p(q)&\nonumber = [q - (pq')p](\arccos p'q) /\sqrt{[1 - (pq')2]}\\&= [\rho _g(p,q)/ \sin \rho _g(p,q)] [q - (pq')p], \end{aligned}$$
(A.3)

for \( q\ne p\), \(q\ne - p\), \(\log _p(p) =0\). The map \( \log _p(q)\) is a diffeomorphism on \(S^d\backslash \{-p\}\) onto \(\{v\in T_pS^d: |v| < \pi \}\). If one uses complex coordinates for p, q then \(pq'\) in the formula above are to be replaced by \({\text {Re}}(pq^*)\), etc.

Most of the manifolds we consider in this article are of the form \(M=N/\mathcal G\). Here N is a complete Riemannian manifold with a metric tensor \(\rho _{g,N}\) and \(\mathcal G\) is a compact Lie group of isometries acting freely on N, i.e., except for the identity map, no g in \(\mathcal G\) has a fixed point. This means that the orbit \(O_p\) of a point p under \(\mathcal G\) is in one-one correspondence with \(\mathcal G\). As a subset of N, \(O_p\) is a submanifold of N of dimension that of \(\mathcal G\). Its tangent space \(T_p O_p\) as a subspace of \(T_pN\) is called the vertical subspace of \(T_pN\), denoted \(V_p\). The subspace \(H_p\) of \(T_pN\) orthogonal to \(V_p\) is the horizontal subspace. M is then a Riemannian manifold with the metric tensor. The projection \(\pi : N\rightarrow M\) is a Riemannian submersion. The quotient \(N/\mathcal G\) is then a Riemannian manifold.

The final important notion from geometry needed in this section is that of curvature. First, consider a smooth unit speed curve \(\gamma \) in \(\mathbb {R}^2\): \(1= |\dot{\gamma }(t) |^2 =\langle \dot{\gamma }(t), \dot{\gamma }(t) \rangle \). Differentiation shows that \(\ddot{\gamma }(t) = \mathrm {d}^2\gamma (t)/\mathrm {d}t^2\) is orthogonal to \(\dot{\gamma }(t) : \ddot{\gamma }(t) = \kappa (t)N(t)\), where N(t) is a unit vector orthogonal to \(\dot{\gamma }(t)\) such that \((\dot{\gamma }(t), N(t))\) has the same orientation as \((\partial /\partial x_1, \partial /\partial x_2)\). Then \(\kappa (t)\) is the curvature of \(\gamma \) at the point \(\gamma (t)\). Next, at a point p on a regular surface S in \(\mathbb {R}^3\), let \(N= N(p)\) denote a unit normal to S at p. A plane \(\pi \) through N(p) intersects S in a smooth curve. Let \(\kappa (. ; p,\pi )\) be the curvature of this curve. As \(\pi \) varies by degrees of rotation, the curvature varies. Let \(\kappa _1\) be the maximum and \(\kappa _2\) the minimum of these curvatures, and let \(\kappa = \kappa _1\kappa _2\). The Theorem Egregium of Gauss says that \(\kappa = \kappa (p)\) (\(p \in S\)), the so-called Gaussian curvature, is intrinsic to the surface S, i.e., it is the same for all surfaces isometric to S (See, e.g., Boothby 1986, pp. 377–381). We now consider, somewhat informally, the case of a Riemannian manifold M. For \(p \in M\) and \(u,v \in T_p(M)\), consider the two dimensional subspace \(\pi \) spanned by u,v. Consider the two-dimensional submanifold swept out by geodesics in M with initial velocities lying in this subspace. The Gaussian curvature of this submanifold, thought of locally as a surface, is called the sectional curvature of M at p for the section \(\pi \).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharya, R., Lin, L. (2019). Differential Geometry for Model Independent Analysis of Images and Other Non-Euclidean Data: Recent Developments. In: Sidoravicius, V. (eds) Sojourns in Probability Theory and Statistical Physics - II. Springer Proceedings in Mathematics & Statistics, vol 299. Springer, Singapore. https://doi.org/10.1007/978-981-15-0298-9_1

Download citation

Publish with us

Policies and ethics