Skip to main content

Mean-Field Bound on the 1-Arm Exponent for Ising Ferromagnets in High Dimensions

  • Conference paper
  • First Online:
Sojourns in Probability Theory and Statistical Physics - I

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 298))

Abstract

The 1-arm exponent \(\rho \) for the ferromagnetic Ising model on \(\mathbb {Z}^d\) is the critical exponent that describes how fast the critical 1-spin expectation at the center of the ball of radius r surrounded by plus spins decays in powers of r. Suppose that the spin-spin coupling J is translation-invariant, \(\mathbb {Z}^d\)-symmetric and finite-range. Using the random-current representation and assuming the anomalous dimension \(\eta =0\), we show that the optimal mean-field bound \(\rho \le 1\) holds for all dimensions \(d>4\). This significantly improves a bound previously obtained by a hyperscaling inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizenman, M.: Geometric analysis of \(\phi ^4\) fields and Ising models. Commun. Math. Phys. 86, 1–48 (1982)

    Google Scholar 

  2. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108, 489–526 (1987)

    Article  MathSciNet  Google Scholar 

  3. Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47, 343–374 (1987)

    Article  MathSciNet  Google Scholar 

  4. Aizenman, M., Duminil-Copin, H., Sidoravicius, V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334, 719–742 (2015)

    Article  MathSciNet  Google Scholar 

  5. Aizenman, M., Fernández, R.: On the critical behavior of the magnetization in high-dimensional Ising models. J. Stat. Phys. 44, 393–454 (1986)

    Article  MathSciNet  Google Scholar 

  6. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36, 107–143 (1984)

    Article  MathSciNet  Google Scholar 

  7. Chen, L.-C., Sakai, A.: Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. 43, 639–681 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bissacot, R., Endo, E.O., van Enter, A.C.D.: Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields. Stoch. Proc. Appl. 127, 4126–4138 (2017)

    Article  MathSciNet  Google Scholar 

  9. Fitzner, R., van der Hofstad, R.: Mean-field behavior for nearest-neighbor percolation in \(d>10\). Electron. J. Probab. 22(43), 1–65 (2017). An extended version on arxiv.org/abs/1506.07977

  10. Ginibre, J.: General formulation of Griffiths’ inequalities. Commun. Math. Phys. 16, 310–328 (1970)

    Article  MathSciNet  Google Scholar 

  11. Griffiths, R.B., Hurst, C.A., Sherman, S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys. 11, 790–795 (1970)

    Article  MathSciNet  Google Scholar 

  12. Grimmett, G.R.: Percolation, 2nd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  13. Hara, T.: Decay of correlations in nearest-neighbour self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36, 530–593 (2008)

    Article  MathSciNet  Google Scholar 

  14. Hara, T., van der Hofstad, R., Slade, G.: Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31, 349–408 (2003)

    Article  MathSciNet  Google Scholar 

  15. Hara, T., Slade, G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128, 333–391 (1990)

    Article  MathSciNet  Google Scholar 

  16. Heydenreich, M., van der Hofstad, R.: Progress in High-Dimensional Percolation and Random Graphs. Springer International Publishing, Switzerland (2017)

    Book  Google Scholar 

  17. Heydenreich, M., van der Hofstad, R., Sakai, A.: Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132, 1001–1049 (2008)

    Article  MathSciNet  Google Scholar 

  18. Heydenreich, M., Kolesnikov, L.: The critical 1-arm exponent for the ferromagnetic Ising model on the Bethe lattice. J. Math. Phys. 59, 043301 (2018)

    Article  MathSciNet  Google Scholar 

  19. Hulshof, T.: The one-arm exponent for mean-field long-range percolation. Electron. J. Probab. 20(115), 1–26 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Jonasson, J., Steif, J.E.: Amenability and phase transition in the ising model. J. Theor. Probab. 12, 549–559 (1999)

    Article  MathSciNet  Google Scholar 

  21. Katsura, S., Takizawa, M.: Bethe lattice and the Bethe approximation. Progr. Theor. Phys. 51, 82–98 (1974)

    Article  Google Scholar 

  22. Kozma, G., Nachmias, A.: Arm exponents in high dimensional percolation. J. Am. Math. Soc. 24, 375–409 (2011)

    Article  MathSciNet  Google Scholar 

  23. Preston, C.J.: Gibbs States on Countable Sets. Cambridge University Press, London (1974)

    Book  Google Scholar 

  24. Sakai, A.: Mean-field behavior for the survival probability and the percolation point-to-surface connectivity. J. Stat. Phys. 117, 111–130 (2004)

    Article  MathSciNet  Google Scholar 

  25. Sakai, A.: Lace expansion for the Ising model. Commun. Math. Phys. 272, 283–344 (2007)

    Article  MathSciNet  Google Scholar 

  26. Sakai, A.: Application of the lace expansion to the \({\varphi }^4\) model. Commun. Math. Phys. 336, 619–648 (2015)

    Google Scholar 

  27. Schonmann, R.H.: Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs. Commun. Math. Phys. 219, 271–322 (2001)

    Article  MathSciNet  Google Scholar 

  28. Simon, B., Griffiths, R.B.: The \((\phi ^4)_2\) field theory as a classical Ising model. Commun. Math. Phys. 33, 145–164 (1973)

    Google Scholar 

  29. Sokal, A.D.: An alternate constructive approach to the \({\varphi }_3^4\) quantum field theory, and a possible destructive approach to \({\varphi }_4^4\). Ann. Inst. Henri Poincaré Phys. Théorique 37, 317–398 (1982)

    Google Scholar 

  30. Tasaki, H.: Hyperscaling inequalities for percolation. Commun. Math. Phys. 113, 49–65 (1987)

    Article  MathSciNet  Google Scholar 

  31. Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Spin-spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region. Phys. Rev. B 13, 316–374 (1976)

    Article  Google Scholar 

  32. Yang, C.N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808–816 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of AS is supported by the JSPS Grant-in-Aid for Challenging Exploratory Research 15K13440. The work of SH is supported by the Ministry of Education, Culture, Sports, Science and Technology through Program for Leading Graduate Schools (Hokkaido University “Ambitious Leader’s Program”). We thank Aernout van Enter for providing references about the history of the problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sakai .

Editor information

Editors and Affiliations

Additional information

We dedicate this work to Chuck Newman on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Handa, S., Heydenreich, M., Sakai, A. (2019). Mean-Field Bound on the 1-Arm Exponent for Ising Ferromagnets in High Dimensions. In: Sidoravicius, V. (eds) Sojourns in Probability Theory and Statistical Physics - I. Springer Proceedings in Mathematics & Statistics, vol 298. Springer, Singapore. https://doi.org/10.1007/978-981-15-0294-1_8

Download citation

Publish with us

Policies and ethics