Skip to main content

Probability Theory in Statistical Physics, Percolation, and Other Random Topics: The Work of C. Newman

  • Conference paper
  • First Online:
Sojourns in Probability Theory and Statistical Physics - I

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 298))

  • 737 Accesses

Abstract

In the introduction to this volume, we discuss some of the highlights of the research career of Chuck Newman. This introduction is divided into two main sections, the first covering Chuck’s work in statistical mechanics and the second his work in percolation theory, continuum scaling limits, and related topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizenman, M.: Scaling limit for the incipient spanning clusters. In: Mathematics of Multiscale Materials, pp. 1–24. Springer, New York (1998)

    Google Scholar 

  2. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aizenman, M., Burchard, A.: Hölder regularity and dimension bounds for random curves. Duke Math. J. 99(3), 419–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aizenman, M., Burchard, A., Newman, C.M., Wilson, D.B.: Scaling limits for minimal and random spanning trees in two dimensions. Random Struct. Algorithms 15(3–4), 319–367 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M.: Discontinuity of the magnetization in one-dimensional \(1/|x-y|^2\) Ising and Potts models. J. Stat. Phys. 50, 1–40 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aizenman, M., Fisher, D.S.: Unpublished

    Google Scholar 

  7. Aizenman, M., Kesten, H., Newman, C.M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Commun. Math. Phys. 111(4), 505–531 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36(1), 107–143 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aizenman, M., Newman, C.M.: Discontinuity of the percolation density in one dimensional \(1/|x-y|^2\) percolation models. Commun. Math. Phys. 107(4), 611–647 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aizenman, M., Wehr, J.: Rounding effects of quenched randomness on first-order phase transitions. Commun. Math. Phys. 130, 489–528 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arguin, L.P., Damron, M., Newman, C.M., Stein, D.L.: Uniqueness of ground states for short-range spin glasses in the half-plane. Commun. Math. Phys. 300, 641–657 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arguin, L.P., Newman, C.M., Stein, D.L.: Thermodynamic identities and symmetry breaking in short-range spin glasses. Phys. Rev. Lett. 115, 187–202 (2015)

    Article  Google Scholar 

  13. Arguin, L.P., Newman, C.M., Stein, D.L., Wehr, J.: Fluctuation bounds for interface free energies in spin glasses. J. Stat. Phys. 156, 221–238 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Arguin, L.P., Newman, C.M., Stein, D.L., Wehr, J.: Fluctuation bounds in spin glasses at zero temperature. J. Stat. Phys. 165, 1069–1078 (2016)

    Article  MATH  Google Scholar 

  15. Arous, G.B., Cerný, J.: Dynamics of trap models. In: Mathematical Statistical Physics Lecture Notes, vol. LXXXIII, Les Houches Summer School, pp. 331–394. North-Holland, Amsterdam (2006)

    Google Scholar 

  16. Arratia, R.: Coalescing Brownian motions on the line. Ph.D. Thesis, Univ. Wisconsin, Madison (1979)

    Google Scholar 

  17. Arratia, R.: Coalescing Brownian motions and the voter model on \(F\) (1981). Unpiblished manuscript

    Google Scholar 

  18. Aspelmeier, T., Katzgraber, H.G., Larson, D., Moore, M.A., Wittmann, M., Yeo, J.: Finite-size critical scaling in Ising spin glasses in the mean-field regime. Phys. Rev. E 93, 032123 (2016)

    Article  MathSciNet  Google Scholar 

  19. Auffinger, A., Damron, M.: Differentiability at the edge of the percolation cone and related results in first-passage percolation. Probab. Theory Relat. Fields 156(1), 193–227 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Auffinger, A., Damron, M., Hanson, J.: 50 Years of First-Passage Percolation. American Mathematical Society, Providence (2017)

    Book  MATH  Google Scholar 

  21. Badoni, D., Ciria, J., Parisi, G., Ritort, F., Pech, J., Ruiz-Lorenzo, J.: Numerical evidence of a critical line in the \(4d\) Ising spin glass. Europhys. Lett. 21, 495–499 (1993)

    Article  Google Scholar 

  22. Ballesteros, H., Cruz, A., Fernández, L., Martin-Mayor, V., Pech, J., Ruiz-Lorenzo, J., Tarancón, A., Téllez, P., Ullod, C., Ungil, C.: Critical behavior of the three-dimensional Ising spin glass. Phys. Rev. B 62, 14237 (2000)

    Article  Google Scholar 

  23. Banavar, J.R., Cieplak, M., Maritan, A.: Optimal paths and domain walls in the strong disorder limit. Phys. Rev. Lett. 72, 2320–2323 (1994)

    Article  Google Scholar 

  24. Barsky, D., Aizenman, M.: Percolation critical exponents under the triangle condition. Ann. Probab. 19, 1520–1536 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Barsky, D.J., Grimmett, G.R., Newman, C.M.: Percolation in half-spaces: equality of critical densities and continuity of the percolation probability. Probab. Theory Relat. Fields 90(1), 111–148 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Barsky, D.J., Wu, C.C.: Critical exponents for the contact process under the triangle condition. J. Stat. Phys. 91(1), 95–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Beffara, V., Nolin, P.: On monochromatic arm exponents for 2D critical percolation. Ann. Probab. 39(4), 1286–1304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys. 34(5), 763–774 (1984)

    Article  MathSciNet  Google Scholar 

  30. Benjamini, I., Schramm, O.: Percolation beyond , many questions and a few answers. Electron. Commun. Probab. 1, 71–82 (1996)

    Google Scholar 

  31. Bethe, H.: Statistical theory of superlattices. Proc. Roy. Soc. London A: Math. Phys. Eng. Sci. 150(871), 552–575 (1935)

    Article  MATH  Google Scholar 

  32. Billoire, A., Maiorano, A., Marinari, E., Martin-Mayor, V., Yllanes, D.: Cumulative overlap distribution function in realistic spin glasses. Phys. Rev. B 90, 094201 (2014)

    Article  Google Scholar 

  33. Binder, K., Young, A.P.: Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986)

    Article  Google Scholar 

  34. Bleher, P.M., Sinai, J.G.: Investigation of the critical point in models of the type of dyson’s hierarchical models. Commun. Math. Phys. 33(1), 23–42 (1973)

    Article  MathSciNet  Google Scholar 

  35. Bokil, H., Bray, A.J., Drossel, B., Moore, M.A.: Comment on ‘General method to determine replica symmetry breaking transitions’. Phys. Rev. Lett. 82, 5174 (1999)

    Article  Google Scholar 

  36. Bokil, H., Drossel, B., Moore, M.A.: The influence of critical behavior on the spin glass phase (2000). Available as cond-mat/0002130

    Google Scholar 

  37. Bollobas, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  38. Borgs, C., Chayes, J.T., van der Hofstad, R., Slade, G., Spencer, J.: Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33(5), 1886–1944 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Borthwick, D., Garibaldi, S.: Did a 1-dimensional magnet detect a 248-dimensional Lie algebra? Notices Amer. Math. Soc. 58, 1055–1066 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Bouchaud, J.P.: Weak ergodicity breaking and aging in disordered systems. J. Phys. I(2), 1705–1713 (1992)

    Google Scholar 

  41. Bray, A.J., Moore, M.A.: Critical behavior of the three-dimensional Ising spin glass. Phys. Rev. B 31, 631–633 (1985)

    Article  Google Scholar 

  42. Bray, A.J., Moore, M.A.: Chaotic nature of the spin-glass phase. Phys. Rev. Lett. 58, 57–60 (1987)

    Article  Google Scholar 

  43. Broadbent, S.: Contribution to discussion on symposium on Monte Carlo methods. J. Roy. Statist. Soc. B 16, 68 (1954)

    Google Scholar 

  44. Broadbent, S.R., Hammersley, J.M.: Percolation processes: I. Crystals and mazes. In: Mathematical Proceedings of the Cambridge Philosophical Society, 53(3), pp. 629–641 (1957)

    Google Scholar 

  45. Bruijn, N.G.D.: The roots of trigonometric integrals. Duke Math. J. 17, 197–226 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  46. Burton, R.M., Keane, M.: Density and uniqueness in percolation. Commun. Math. Phys. 121(3), 501–505 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. Burton, R.M., Keane, M.: Topological and metric properties of infinite clusters in stationary two-dimensional site percolation. Isr. J. Math. 76, 299–316 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Cacciuto, A., Marinari, E., Parisi, G.: A numerical study of ultrametricity in finite-dimensional spin glasses. J. Phys. A 30, L263–L269 (1997)

    Article  MATH  Google Scholar 

  49. Camia, F., Fontes, L.R.G., Newman, C.M.: The scaling limit geometry of near-critical 2D percolation. J. Stat. Phys. 125, 57–69 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Camia, F., Fontes, L.R.G., Newman, C.M.: Two-dimensional scaling limits via marked nonsimple loops. Bull. Braz. Math. Soc. 37(4), 537–559 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Camia, F., Garban, C., Newman, C.M.: The Ising magnetization exponent on \(\mathbb{Z}^2\) is \(1/15\). Probab. Theory Rel. Fields 160, 175–187 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Camia, F., Garban, C., Newman, C.M.: Planar Ising magnetization field I. Uniqueness of the critical scaling limits. Ann. Probab. 43, 528–571 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Camia, F., Garban, C., Newman, C.M.: Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits. Ann. Inst. H. Poincaré Probab. Statist. 52, 146–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Camia, F., Jiang, J., Newman, C.M.: Exponential decay for the near-critical scaling limit of the planar Ising model. Commun. Pure Appl. Math. (2017, to appear). arXiv:1707.02668

  55. Camia, F., Jiang, J., Newman, C.M.: New FK–Ising coupling applied to near-critical planar models. arXiv:1709.00582

  56. Camia, F., Joosten, M., Meester, R.: Trivial, critical and near-critical scaling limits of two-dimensional percolation. J. Stat. Phys. 137, 57–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Camia, F., Newman, C.M.: Continuum nonsimple loops and 2D critical percolation. J. Stat. Phys. 116(1), 157–173 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Camia, F., Newman, C.M.: The full scaling limit of two-dimensional critical percolation (2005). arXiv:math.PR/0504036

  59. Camia, F., Newman, C.M.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268(1), 1–38 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Camia, F., Newman, C.M.: Critical percolation exploration path and \(SLE_6\): a proof of convergence. Probab. Theory Relat. Fields 139(3), 473–519 (2007)

    Article  MATH  Google Scholar 

  61. Camia, F., Newman, C.: SLE6 and CLE6 from critical percolation. In: Pinsky, M., Birnir, B. (eds.) Probability, Geometry and Integrable Systems, Mathematical Sciences Research Institute Publications 55, vol. 55, pp. 103–130. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  62. Camia, F., Newman, C.M.: Ising (conformal) fields and cluster area measures. Proc. Natl. Acad. Sci. (USA) 14, 5457–5463 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  63. Caracciolo, S., Parisi, G., Patarnello, S., Sourlas, N.: Low temperature behaviour of 3-\({D}\) spin glasses in a magnetic field. J. Phys. France 51, 1877–1895 (1990)

    Article  Google Scholar 

  64. Cator, E., Pimentel, L.P.R.: A shape theorem and semi-infinite geodesics for the Hammersley model with random weights. LEA: Lat. Am. J. Probab. Math. Stat. 8, 163–175 (2011)

    MathSciNet  MATH  Google Scholar 

  65. Chatterjee, S.: Disorder chaos and multiple valleys in spin glasses (2009). arXiv:0907.3381

  66. Chatterjee, S.: The universal relation between scaling exponents in first-passage percolation. Ann. Math. 177(2), 663–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  67. Chayes, J., Chayes, L.: An inequality for the infinite cluster density in Bernoulli percolation. Phys. Rev. Lett. 56, 1619–1622 (1986)

    Article  MathSciNet  Google Scholar 

  68. Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181, 1087–1138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Borgs, C., Chayes, J.T., van der Hofstad, R., Slade, G., Spencer, J.: Random subgraphs of finite graphs: I. The scaling window under the triangle condition. Random Struct. Algorithms 27(2), 137–184 (2005)

    Google Scholar 

  70. Cohen, J.E., Newman, C.M., Briand, F.: A stochastic theory of community food webs: II. Individual webs. Proc. Royal Soc. London B224, 449–461 (1985)

    Google Scholar 

  71. Contucci, P., Giardiná, C., Giberti, C., Parisi, G., Vernia, C.: Ultrametricity in the Edwards-Anderson model. Phys. Rev. Lett. 99, 057206 (2007)

    Article  MATH  Google Scholar 

  72. Cox, J.T., Durrett, R.: Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9(4), 583–603 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  73. Damron, M., Hanson, J.: Bigeodesics in first-passage percolation. Commun. Math. Phys. 349(2), 753–776 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  74. Damron, M., Hochman, M.: Examples of nonpolygonal limit shapes in I.I.D. First-passage percolation and infinite coexistence in spatial growth models. Ann. Appl. Probab. 23(3), 1074–1085 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  75. Delfino, G.: Integrable field theory and critical phenomena: the Ising model in a magnetic field. J. Phys. A: Math. Gen. 37, R45–R78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  76. Derrida, B., Toulouse, G.: Sample to sample fluctuations in the random energy model. J. Phys. (Paris) Lett. 46, L223–L228 (1985)

    Article  Google Scholar 

  77. Doyon, B.: Calculus on manifolds of conformal maps and CFT. J. Phys. A: Math. Theor. 45, 315202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  78. Doyon, B.: Conformal loop ensembles and the stress-energy tensor. Lett. Math. Phys. 103, 233–284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  79. Doyon, B.: Random loops and conformal field theory. J. Stat. Mech. Ther. Expt. 46, 46039207 (2014)

    Google Scholar 

  80. Drossel, B., Bokil, H., Moore, M.A., Bray, A.J.: The link overlap and finite size effects for the \(3{D}\) Ising spin glass. Eur. Phys. J. B 13, 369–375 (2000)

    Article  MATH  Google Scholar 

  81. Dubédat, J.: Excursion decompositions for SLE and Watts’ crossing formula. Probab. Theory Relat. Fields 134(3), 453–488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  82. Dubédat, J.: Exact bosonization of the Ising model (2011). arXiv:1112.4399

  83. Dunlop, F.: Zeros of the partition function and Gaussian inequalities for the plane rotator model. J. Stat. Phys. 21, 561–572 (1979)

    Article  MathSciNet  Google Scholar 

  84. Dunlop, F., Newman, C.M.: Multicomponent field theories and classical rotators. Commun. Math. Phys. 44, 223–235 (1975)

    Article  MathSciNet  Google Scholar 

  85. Dyson, F.: General theory of spin-wave interactions. Phys. Rev. 102, 1217–1229 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  86. Dyson, F.J.: Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12(2), 91–107 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  87. Edwards, R.G., Sokal, A.D.: Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D 38, 2009–2012 (1988)

    Article  MathSciNet  Google Scholar 

  88. Edwards, S., Anderson, P.W.: Theory of spin glasses. J. Phys. F 5, 965–974 (1975)

    Article  Google Scholar 

  89. Ellis, R.S., Newman, C.M.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 44(2), 117–139 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  90. Ellis, R.S., Newman, C.M.: The statistics of Curie-Weiss models. J. Stat. Phys. 19(2), 149–161 (1978)

    Article  MathSciNet  Google Scholar 

  91. Ellis, R.S., Newman, C.M., Rosen, J.S.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 51(2), 153–169 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  92. Fernandez, R., Fröhlich, J., Sokal, A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  93. Ferrari, P.A., Pimentel, L.P.R.: Competition interfaces and second class particles. Ann. Probab. 33(4), 1235–1254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  94. Fisher, D.S., Huse, D.A.: Ordered phase of short-range Ising spin-glasses. Phys. Rev. Lett. 56, 1601–1604 (1986)

    Article  Google Scholar 

  95. Fisher, D.S., Huse, D.A.: Absence of many states in realistic spin glasses. J. Phys. A 20, L1005–L1010 (1987)

    Article  MathSciNet  Google Scholar 

  96. Fisher, D.S., Huse, D.A.: Pure States in Spin Glasses. J. Phys. A 20, L997–L1004 (1987)

    Article  MathSciNet  Google Scholar 

  97. Fisher, D.S., Huse, D.A.: Equilibrium behavior of the spin-glass ordered phase. Phys. Rev. B 38, 386–411 (1988)

    Article  Google Scholar 

  98. Fisher, D.S., Huse, D.A.: Nonequilibrium dynamics of spin glasses. Phys. Rev. B 38, 373–385 (1988)

    Article  Google Scholar 

  99. Fitzner, R., van den Hofstad, R.: Nearest-neighbor percolation function is continuous for \(d > 10\): extended version (2015). arXiv:1506.07977

  100. Fontes, L.R.G., Isopi, M., Newman, C.M.: Chaotic time dependence in a disordered spin system. Prob. Theory Rel. Fields 115, 417–433 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  101. Fontes, L.R.G., Isopi, M., Newman, C.M.: Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab. 30, 579–604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  102. Fontes, L.R.G., Isopi, M., Newman, C.M., Ravishankar, K.: The Brownian web: characterization and convergence. Ann. Probab. 32(4), 2857–2883 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  103. Fontes, L.R.G., Isopi, M., Newman, C.M., Stein, D.L.: Aging in \(1{D}\) discrete spin models and equivalent systems. Phys. Rev. Lett. 87, 1102011 (2001)

    Article  Google Scholar 

  104. Fontes, L.R., Isopi, M., Newman, C.M., Ravishankar, K.: The Brownian web. Proc. Natl. Acad. Sci. 99, 15888–15893 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  105. Forgacs, G., Lipowsky, R., Nieuwenhuizen, T.M.: The behavior of interfaces in ordered and disordered systems. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 14, pp. 135–363. Academic Press, London (1991)

    Google Scholar 

  106. Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to other models. Physica 57, 536–564 (1972)

    Article  MathSciNet  Google Scholar 

  107. Francesco, P., Mathieu, P., Senechal, D.: Conformal Field Theory. Graduate Texts in Contemporary Physics, corrected edn. Springer, New York (1997)

    Google Scholar 

  108. Fröhlich, J., Rodriguez, P.F.: Some applications of the Lee-Yang theorem. J. Math. Phys. 53, 095218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  109. Fröhlich, J., Spencer, T.: On the statistical mechanics of classical Coulomb and dipole gases. J. Stat. Phys. 24, 617–701 (1981)

    Article  MathSciNet  Google Scholar 

  110. Gandolfi, A., Keane, M., Newman, C.M.: Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses. Probab. Theory Relat. Fields 92, 511–527 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  111. Garban, C., Pete, G., Schramm, O.: Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26, 939–1024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  112. Garet, O., Marchand, R.: Moderate deviations for the chemical distance in Bernoulli percolation. ALEA: Lat. Am. J. Probab. Math. Stat. 7, 171–191 (2010)

    MathSciNet  MATH  Google Scholar 

  113. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  114. Grimmett, G.: The random-cluster model. Grundlehren der mathematischen Wissenschaften 333, (2016)

    Google Scholar 

  115. Grimmett, G.R.: Percolation. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  116. Guerra, F., Rosen, L., Simon, B.: Correlation inequalities and the mass gap in \(p(\phi )_2\). Commun. Math. Phys. 41, 19–32 (1975)

    Article  Google Scholar 

  117. Guggenheim, E.A.: The principle of corresponding states. J. Chem. Phys. 13(7), 253–261 (1945)

    Article  Google Scholar 

  118. Gunnarson, K., Svedlindh, P., Nordblad, P., Lundgren, L., Aruga, H., Ito, A.: Static scaling in a short-range Ising spin glass. Phys. Rev. B 43, 8199 (1991)

    Article  Google Scholar 

  119. Hammersley, J.M.: Percolation processes: lower bounds for the critical probability. Ann. Math. Stat. 28(3), 790–795 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  120. Hammersley, J.M.: Bornes supérieures de la probabilité critique dans un processus de filtration. In: Le Calcul des Probabilités et ses Applications. Paris, 15-20 Juillet 1958, p. 790–795. Centre National de la Recherche Scientifique (1959)

    Google Scholar 

  121. Hammersley, J.M., Welsh, D.J.A.: First-Passage Percolation, Subadditive Processes, Stochastic Networks, and Generalized Renewal Theory, pp. 61–110. Springer, Heidelberg (1965)

    MATH  Google Scholar 

  122. Hara, T., Slade, G.: The triangle condition for percolation. Bull. Am. Math. Soc. (N.S.) 21, 269–273 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  123. Hara, T., Slade, G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128(2), 333–391 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  124. Hasenbusch, M., Pelissetto, A., Vicari, E.: Critical behavior of three-dimensional Ising spin glass models. Phys. Rev. B 78, 214205 (2008)

    Article  Google Scholar 

  125. Hed, G., Young, A.P., Domany, E.: Lack of ultrametricity in the low-temperature phase of three-dimensional Ising spin glasses. Phys. Rev. Lett. 92, 157201 (2004)

    Article  Google Scholar 

  126. Hoffman, C.: Geodesics in first passage percolation. Ann. Appl. Probab. 18(5), 1944–1969 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  127. Hongler, C.: Conformal invariance of Ising model correlations. Ph.D. dissertation, Univ. Geneva (2010)

    Google Scholar 

  128. Hongler, C., Smirnov, S.: The energy density in the planar Ising model. Acta Math. 211, 191–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  129. Howard, C.D., Newman, C.M.: Euclidean models of first-passage percolation. Probab. Theory Relat. Fields 108(2), 153–170 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  130. Howard, C.D., Newman, C.M.: From Greedy Lattice Animals to Euclidean First-Passage Percolation, pp. 107–119. Birkhäuser Boston, Boston (1999)

    MATH  Google Scholar 

  131. Howard, C.D., Newman, C.M.: Geodesics and spanning trees for Euclidean first-passage percolation. Ann. Probab. 29(2), 577–623 (2001)

    MathSciNet  MATH  Google Scholar 

  132. Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Article  Google Scholar 

  133. Jackson, T.S., Read, N.: Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model. Phys. Rev. E 81, 021130 (2010)

    Article  Google Scholar 

  134. Baity-Jesi, M., et al.: (Janus Collaboration): Critical parameters of the three-dimensional Ising spin glass. Phys. Rev. B 88, 224416 (2013)

    Article  Google Scholar 

  135. Jona-Lasinio, G.: The renormalization group: a probabilistic view. Il Nuovo Cimento B (1971–1996) 26(1), 99–119 (1975)

    Article  MathSciNet  Google Scholar 

  136. Jona-Lasinio, G.: Probabilistic Approach to Critical Behavior, pp. 419–446. Springer, Boston (1977)

    Google Scholar 

  137. Jona-Lasinio, G.: Renormalization group and probability theory. Phys. Rep. 352(4), 439–458 (2001). Renormalization group theory in the new millennium. III

    Article  MathSciNet  MATH  Google Scholar 

  138. Kasteleyn, P.W., Fortuin, C.M.: Phase transitions in lattice systems with random local properties. J. Phys. Soc. Jpn. [Suppl.] 26, 11–14 (1969)

    Google Scholar 

  139. Katzgraber, H.G., Krzakala, F.: Temperature and disorder chaos in three-dimensional Ising spin glasses. Phys. Rev. Lett. 98, 017201 (2007)

    Article  Google Scholar 

  140. Katzgraber, H.G., Palassini, M., Young, A.P.: Monte Carlo simulations of spin glasses at low temperatures. Phys. Rev. B 63, 184422 (2001)

    Article  Google Scholar 

  141. Katzgraber, H.G., Young, A.P.: Probing the Almeida-Thouless line away from the mean-field model. Phys. Rev. B 72, 184416 (2005)

    Article  Google Scholar 

  142. Kemppainen, A., Werner, W.: The nested simple conformal loop ensembles in the Riemann sphere. Probab. Theory Relat. Fields 165, 835–866 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  143. Kesten, H.: The critical probability of bond percolation on the square lattice equals \(1/2\). Commun. Math. Phys. 74(1), 41–59 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  144. Kesten, H.: Percolation Theory for Mathematicians. Birkhauser, Boston (1982)

    Book  MATH  Google Scholar 

  145. Kesten, H.: Aspects of First-Passage Percolation, pp. 125–264. Springer, Berlin (1986)

    MATH  Google Scholar 

  146. Kesten, H.: On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3, 296–338 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  147. Ki, H., Kim, Y.O., Lee, J.: On the de Bruijn-Newman constant. Adv. Math. 222, 281–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  148. Kipnis, C., Newman, C.M.: The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM J. Appl. Math. 45, 972–982 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  149. Knauf, A.: Number theory, dynamical systems and statistical mechanics. Rev. Math. Phys. 11, 1027–1060 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  150. Krug, J., Spohn, H.: Kinetic Roughening of Growing Interfaces, pp. 479–582. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  151. Krzakala, F., Martin, O.C.: Spin and link overlaps in three-dimensional spin glasses. Phys. Rev. Lett. 85, 3013–3016 (2000)

    Article  Google Scholar 

  152. Külske, C.: Limiting behavior in random Gibbs measures: metastates in some disordered mean field models. In: Bovier, A., Picco, P. (eds.) Mathematics of Spin Glasses and Neural Networks, pp. 151–160. Birkhauser, Boston (1998)

    Chapter  MATH  Google Scholar 

  153. Külske, C.: Metastates in disordered mean-field models II: The superstates. J. Stat. Phys. 91, 155–176 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  154. Landau, L.D.: On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937). [Ukr. J. Phys.53,25(2008)]

    Google Scholar 

  155. Lawler, G.F., Schramm, O., Werner, W.: The dimension of the planar Brownian frontier is \(4/3\). Math. Res. Lett. 8, 401–411 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  156. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents, I: Half-plane exponents. Acta Math. 187(2), 237–273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  157. Lawler, G.F., Schramm, O., Werner, W.: One-arm exponent for critical 2d percolation. Electron. J. Probab. 7, 13 pp. (2002)

    Google Scholar 

  158. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  159. Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410–419 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  160. Lenz, W.: Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern. Physik Zeitschr. 21, 613–615 (1920)

    Google Scholar 

  161. Licea, C., Newman, C., Piza, M.: Superdiffusivity in first-passage percolation. Probab. Theory Relat. Fields 106(4), 559–591 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  162. Licea, C., Newman, C.M.: Geodesics in two-dimensional first-passage percolation. Ann. Probab. 24(1), 399–410 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  163. Lieb, E.H., Sokal, A.D.: A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80, 153–179 (1981)

    Article  MathSciNet  Google Scholar 

  164. Lyons, R.: Phase transitions on nonamenable graphs. J. Math. Phys. 41(3), 1099–1126 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  165. Machta, J., Newman, C.M., Stein, D.L.: The percolation signature of the spin glass transition. J. Stat. Phys. 130, 113–128 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  166. Machta, J., Newman, C.M., Stein, D.L.: Percolation in the Sherrington–Kirkpatrick spin glass. In: Sidoravicious, V., Vares, M.E. (eds.) Progress in Probability, vol. 60: In and Out of Equilibrium II, pp. 527–542. Birkhauser, Boston (2009)

    Google Scholar 

  167. Machta, J., Newman, C.M., Stein, D.L.: A percolation-theoretic approach to spin glass phase transitions. In: de Monvel, A.B., Bovier, A. (eds.) Proceedings of the 2007 Paris Spin Glass Summer School, Progress in Probability Series, vol. 62, pp. 205–223. Birkhauser, Boston (2009)

    Google Scholar 

  168. Marinari, E., Parisi, G.: Effects of changing the boundary conditions on the ground state of Ising spin glasses. Phys. Rev. B 62, 11677–11685 (2000)

    Article  Google Scholar 

  169. Marinari, E., Parisi, G.: Effects of a bulk perturbation on the ground state of \(3{D}\) Ising spin glasses. Phys. Rev. Lett. 86, 3887–3890 (2001)

    Article  Google Scholar 

  170. Marinari, E., Parisi, G., Ricci-Tersenghi, F., Ruiz-Lorenzo, J.J., Zuliani, F.: Replica symmetry breaking in spin glasses: theoretical foundations and numerical evidences. J. Stat. Phys. 98, 973–1047 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  171. Marinari, E., Parisi, G., Ritort, F.: On the \(3{D}\) Ising spin glass. J. Phys. A 27, 2687–2708 (1994)

    Article  MathSciNet  Google Scholar 

  172. Marinari, E., Parisi, G., Ruiz-Lorenzo, J.: Numerical simulations of spin glass systems. In: Young, A.P. (ed.) Spin Glasses and Random Fields, pp. 59–98. World Scientific, Singapore (1997)

    Chapter  Google Scholar 

  173. Marinari, E., Parisi, G., Ruiz-Lorenzo, J.J., Ritort, F.: Numerical evidence for spontaneously broken replica symmetry in \(3{D}\) spin glasses. Phys. Rev. Lett. 76, 843–846 (1996)

    Article  Google Scholar 

  174. McCoy, B., Mallard, J.M.: The importance of the Ising model. Program. Theor. Phys. 127, 791–817 (2012)

    Article  MATH  Google Scholar 

  175. McMillan, W.L.: Scaling theory of Ising spin glasses. J. Phys. C 17, 3179–3187 (1984)

    Article  Google Scholar 

  176. Mermin, N.D., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)

    Article  Google Scholar 

  177. Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.: Nature of spin-glass phase. Phys. Rev. Lett. 52, 1156–1159 (1984)

    Article  MATH  Google Scholar 

  178. Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.: Replica symmetry breaking and the nature of the spin-glass phase. J. Phys. (Paris) 45, 843–854 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  179. Mézard, M., Parisi, G., Virasoro, M.A.: Random free energies in spin glasses. J. Phys. (Paris) Lett. 46, L217–L222 (1985)

    Article  Google Scholar 

  180. Mézard, M., Parisi, G., Virasoro, M.A. (eds.): Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  181. Middleton, A.A.: Numerical investigation of the thermodynamic limit for ground states in models with quenched disorder. Phys. Rev. Lett. 83, 1672–1675 (1999)

    Article  Google Scholar 

  182. Middleton, A.A.: Energetics and geometry of excitations in random systems. Phys. Rev. B 63, 060202 (2000)

    Article  Google Scholar 

  183. Middleton, A.A.: Extracting thermodynamic behavior of spin glasses from the overlap function. Phys. Rev. B 87, 220201 (2013)

    Article  Google Scholar 

  184. Miller, J., Sheffield, S., Werner, W.: CLE precolations. Forum Math. 5, 102 pages (2017)

    Google Scholar 

  185. Miller, J., Sun, N., Wilson, D.B.: The Hausdorff dimension of the CLE gasket. Ann. Probab. 42, 1644–1665 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  186. Miller, J., Watson, S.S., Wilson, D.B.: The conformal loop ensemble nesting field. Probab. Theory Relat. Fields 163, 769–801 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  187. Miller, J., Watson, S.S., Wilson, D.B.: Extreme nesting in the conformal loop ensemble. Ann. Probab. 44, 1013–1052 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  188. Miller, J., Werner, W.: Connection probabilities for conformal loop ensembles. Commun. Math. Phys. 362, 415–453 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  189. Moore, M.A., Bokil, H., Drossel, B.: Evidence for the droplet picture of spin glasses. Phys. Rev. Lett. 81, 4252–4255 (1998)

    Article  Google Scholar 

  190. Nanda, S., Newman, C.M., Stein, D.L.: Dynamics of Ising spin systems at zero temperature. In: R. Minlos, S. Shlosman, Y. Suhov (eds.) On Dobrushin’s Way (from Probability Theory to Statistical Physics), pp. 183–194. Amer. Math. Soc. Transl. (2) 198 (2000)

    Google Scholar 

  191. Newman, C.M.: Ultralocal quantum field theory in terms of currents. Commun. Math. Phys. 26(3), 169–204 (1972)

    Article  MathSciNet  Google Scholar 

  192. Newman, C.M.: The construction of stationary two-dimensional Markoff fields with an application to quantum field theory. J. Funct. Anal. 14(1), 44–61 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  193. Newman, C.M.: Zeros of the partition function for generalized Ising systems. Commun. Pure Appl. Math. 27, 143–159 (1974)

    Article  MathSciNet  Google Scholar 

  194. Newman, C.M.: Inequalities for Ising models and field theories which obey the Lee-Yang theorem. Commun. Math. Phys. 41, 1–9 (1975)

    Article  MathSciNet  Google Scholar 

  195. Newman, C.M.: Fourier transforms with only real zeros. Proc. Am. Math. Soc. 61, 245–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  196. Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74(2), 119–128 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  197. Newman, C.M.: A general central limit theorem for FKG systems. Commun. Math. Phys. 91(1), 75–80 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  198. Newman, C.M.: Some critical exponent inequalities for percolation. J. Stat. Phys. 45(3), 359–368 (1986)

    Article  MathSciNet  Google Scholar 

  199. Newman, C.M.: Another critical exponent inequality for percolation: \(\beta \ge 2/\delta \). J. Stat. Phys. 47(5), 695–699 (1987)

    Article  MathSciNet  Google Scholar 

  200. Newman, C.M.: Inequalities for \(\gamma \) and related critical exponents in short and long range percolation. In: Percolation Theory and Ergodic Theory of Infinite Particle Systems, pp. 229–244. Springer, New York (1987)

    Google Scholar 

  201. Newman, C.M.: Disordered Ising systems and random cluster representations. In: Grimmett, G. (ed.) Probability and Phase Transition, pp. 247–260. Kluwer, Dordrecht (1994)

    Chapter  Google Scholar 

  202. Newman, C.M.: Topics in Disordered Systems. Birkhauser, Basel (1997)

    Book  MATH  Google Scholar 

  203. Newman, C.M., Cohen, J.E.: A stochastic theory of community food webs: I. Models and aggregated data. Proc. Royal. Soc. London B224, 421–448 (1985)

    Google Scholar 

  204. Newman, C.M., Cohen, J.E., Kipnis, C.: Neo-Darwinian evolution implies punctuated equilibria. Nature 315, 400–401 (1985)

    Article  Google Scholar 

  205. Newman, C.M., Grimmett, G.R.: Percolation in \(\infty +1\) Dimensions, pp. 167–190. Claredon Press, Oxford (1990)

    MATH  Google Scholar 

  206. Newman, C.M., Piza, M.S.T.: Divergence of shape fluctuations in two dimensions. Ann. Probab. 23(3), 977–1005 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  207. Newman, C.M., Schulman, L.S.: Infinite clusters in percolation models. J. Stat. Phys. 26(3), 613–628 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  208. Newman, C.M., Schulman, L.S.: One dimensional \(1/|j - i|^s\) percolation models: the existence of a transition for \(s \le 2\). Commun. Math. Phys. 104(4), 547–571 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  209. Newman, C.M., Stein, D.L.: Unpublished

    Google Scholar 

  210. Newman, C.M., Stein, D.L.: Multiple states and thermodynamic limits in short-ranged Ising spin glass models. Phys. Rev. B 46, 973–982 (1992)

    Article  Google Scholar 

  211. Newman, C.M., Stein, D.L.: Spin-glass model with dimension-dependent ground state multiplicity. Phys. Rev. Lett. 72, 2286–2289 (1994)

    Article  Google Scholar 

  212. Newman, C.M., Stein, D.L.: Ground state structure in a highly disordered spin glass model. J. Stat. Phys. 82, 1113–1132 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  213. Newman, C.M., Stein, D.L.: Spatial inhomogeneity and thermodynamic chaos. Phys. Rev. Lett. 76, 4821–4824 (1996)

    Article  Google Scholar 

  214. Newman, C.M., Stein, D.L.: Metastate approach to thermodynamic chaos. Phys. Rev. E 55, 5194–5211 (1997)

    Article  MathSciNet  Google Scholar 

  215. Newman, C.M., Stein, D.L.: Simplicity of state and overlap structure in finite-volume realistic spin glasses. Phys. Rev. E 57, 1356–1366 (1998)

    Article  MathSciNet  Google Scholar 

  216. Newman, C.M., Stein, D.L.: Thermodynamic chaos and the structure of short-range spin glasses. In: Bovier, A., Picco, P. (eds.) Mathematics of Spin Glasses and Neural Networks, pp. 243–287. Birkhauser, Boston (1998)

    Chapter  MATH  Google Scholar 

  217. Newman, C.M., Stein, D.L.: Blocking and persistence in the zero-temperature dynamics of homogeneous and disordered Ising models. Phys. Rev. Lett. 82, 3944–3947 (1999)

    Article  Google Scholar 

  218. Newman, C.M., Stein, D.L.: Equilibrium pure states and nonequilibrium chaos. J. Stat. Phys. 94, 709–722 (1999)

    MathSciNet  MATH  Google Scholar 

  219. Newman, C.M., Stein, D.L.: Nature of ground state incongruence in two-dimensional spin glasses. Phys. Rev. Lett. 84, 3966–3969 (2000)

    Article  Google Scholar 

  220. Newman, C.M., Stein, D.L.: Are there incongruent ground states in \(2{D}\) Edwards-Anderson spin glasses? Commun. Math. Phys. 224, 205–218 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  221. Newman, C.M., Stein, D.L.: Interfaces and the question of regional congruence in spin glasses. Phys. Rev. Lett. 87, 077201 (2001)

    Article  Google Scholar 

  222. Newman, C.M., Stein, D.L.: Nonrealistic behavior of mean field spin glasses. Phys. Rev. Lett. 91, 197205 (2003)

    Article  Google Scholar 

  223. Newman, C.M., Stein, D.L.: Topical review: ordering and broken symmetry in short-ranged spin glasses. J. Phys. Condens. Matter 15, R1319–R1364 (2003)

    Article  Google Scholar 

  224. Newman, C.M., Stein, D.L.: Short-range spin glasses: results and speculations. In: Bolthausen, E., Bovier, A. (eds.) Spin Glass Theory, pp. 159–175. Springer, Berlin (2006)

    Google Scholar 

  225. Newman, C.M., Wu, W.: Gaussian fluctuations for the classical XY model. Ann. Inst. H. Poincare (B) 54, 1759–1777 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  226. Newman, C.M., Wu, W.: Lee-Yang property and Gaussian multiplicative chaos. Commun. Math. Phys. 369, 153–170 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  227. Newman, C.M., Wu, W.: Constants of deBruijn–Newman type in analytic number theory and statistical physics. Bull. Am. Math. Soc., in press. Published online April 19, 2019. https://doi.org/10.1090/bull/1668

  228. Nguyen, B.G.: Gap exponents for percolation processes with triangle condition. J. Stat. Phys. 49(1), 235–243 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  229. Nguyen, B.G., Yang, W.S.: Triangle condition for oriented percolation in high dimensions. Ann. Probab. 21(4), 1809–1844 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  230. Onsager, L.: Crystal statisics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  231. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  232. Palassini, M., Caracciolo, S.: Universal finite-size scaling functions in the \(3d\) Ising spin glass. Phys. Rev. Lett. 82, 5128–5131 (1999)

    Article  Google Scholar 

  233. Palassini, M., Young, A.P.: Evidence for a trivial ground-state structure in the two-dimensional Ising spin glass. Phys. Rev. B 60, R9919–R9922 (1999)

    Article  Google Scholar 

  234. Palassini, M., Young, A.P.: Triviality of the ground state structure in Ising spin glasses. Phys. Rev. Lett. 83, 5126–5129 (1999)

    Article  Google Scholar 

  235. Palassini, M., Young, A.P.: Nature of the spin glass state. Phys. Rev. Lett. 85, 3017–3020 (2000)

    Article  Google Scholar 

  236. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756 (1979)

    Article  Google Scholar 

  237. Parisi, G.: Order parameter for spin-glasses. Phys. Rev. Lett. 50, 1946–1948 (1983)

    Article  MathSciNet  Google Scholar 

  238. Peierls, R.: On Ising’s model of ferromagnetism. Proc. Cambridge Phil. Soc. 32, 477–481 (1936)

    Article  MATH  Google Scholar 

  239. Penrose, O., Lebowitz, J.L.: On the exponential decay of correlation functions. Commun. Math. Phys. 39, 165–184 (1974)

    Article  MathSciNet  Google Scholar 

  240. Polyakov, A.M.: Conformal symmetry of critical fluctuations. JETP Lett. 12, 381–383 (1970). [Pisma Zh. Eksp. Teor. Fiz. 12538(1970)]

    Google Scholar 

  241. Polymath, D.H.J.: Effective approximation of heat flow evolution of the Riemann \(\zeta \) function, and a new upper bound for the deBruijn–Newman constant (2019). arXiv:1904.12438

  242. R. Basu, S.S., Sly, A.: Coalescence of geodesics in exactly solvable models of last passage percolation (2017). arXiv:1704.05219

  243. Rammal, R., Toulouse, G., Virasoro, M.A.: Ultrametricity for physicists. Rev. Mod. Phys. 58, 765–788 (1986)

    Article  MathSciNet  Google Scholar 

  244. Read, N.: Short-range Ising spin glasses: the metastate interpretation of replica symmetry breaking. Phys. Rev. E 90, 032142 (2014)

    Article  Google Scholar 

  245. Reger, J.D., Bhatt, R.N., Young, A.P.: Monte Carlo study of the order-parameter distribution in the four-dimensional Ising spin glass. Phys. Rev. Lett. 64, 1859–1862 (1990)

    Article  Google Scholar 

  246. Richardson, D.: Random growth in a tessellation. Math. Proc. Cambridge Philos. Soc. 74(3), 515–528 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  247. Rodgers, B., Tao, T.: The De Bruijn–Newman constant is non-negative. arXiv:1801.05914

  248. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161(2), 883–924 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  249. Ruelle, D.: A mathematical reformulation of derrida’s REM and GREM. Commun. Math. Phys. 108, 225–239 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  250. Rushbrooke, G.S.: On the thermodynamics of the critical region for the Ising problem. J. Chem. Phys. 39(3), 842–843 (1963)

    Article  Google Scholar 

  251. Saouter, Y., Gourdon, X., Demichel, P.: An improved lower bound for the de Bruijn-Newman constant. Math. Comput. 80, 2281–2287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  252. Schertzer, E., Sun, R., Swart, J.: The Brownian Web, The Brownian Net, and Their Universality, pp. 270–368. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  253. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118(1), 221–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  254. Schramm, O.: A percolation formula. Electron. Commun. Probab. 6(12), 115–120 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  255. Schramm, O., Sheffield, S., Wilson, D.: Conformal radii for conformal loop ensembles. Commun. Math. Phys. 288, 43–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  256. Sheffield, S.: Exploration trees and conformal loop ensembles. Duke Math. J. 147(1), 79–129 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  257. Sheffield, S., Werner, W.: Conformal loop ensembles: the Markovian characterization and the loop-soup construction. Ann. Math. 176(3), 1827–1917 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  258. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792–1796 (1975)

    Article  Google Scholar 

  259. Simon, B., Griffiths, R.B.: The \((\phi ^4)_2\) field theory as a classical Ising model. Commun. Math. Phys. 33(2), 145–164 (1973)

    Article  Google Scholar 

  260. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 333(3), 239–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  261. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 1435–1467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  262. Smirnov, S., Werner, W.: Critical exponents for two-dimensional percolation. Math. Res. Lett. 8, 729–744 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  263. Stauffer, D.: Scaling properties of percolation clusters. In: Castellani, C., Di Castro, C., Peliti, L. (eds.) Disordered Systems and Localization, pp. 9–25. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  264. Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor & Francis, London (1994). Revised Second Edition

    MATH  Google Scholar 

  265. Stein, D.L.: Frustration and fluctuations in systems with quenched disorder. In: Chandra, P., Coleman, P., Kotliar, G., Ong, P., Stein, D., Yu, C. (eds.) PWA90: A Lifetime of Emergence, pp. 169–186. World Scientific, Singapore (2016)

    Chapter  Google Scholar 

  266. Stein, D.L., Newman, C.M.: Broken ergodicity and the geometry of rugged landscapes. Phys. Rev. E 51, 5228–5238 (1995)

    Article  Google Scholar 

  267. Stein, D.L., Newman, C.M.: Spin Glasses and Complexity. Princeton University Press, Princeton (2013)

    Book  MATH  Google Scholar 

  268. Sun, R., Swart, J.M.: The Brownian net. Ann. Probab. 36(3), 1153–1208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  269. Suzuki, M., Fisher, M.E.: Zeros of the partition function for the Heisenberg, ferroelectric, and general Ising models. J. Math. Phys. 12, 235–246 (1971)

    Article  MathSciNet  Google Scholar 

  270. Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58, 86–88 (1987)

    Article  Google Scholar 

  271. Thouless, D.J.: Long-range order in one-dimensional Ising systems. Phys. Rev. 187, 732–733 (1969)

    Article  Google Scholar 

  272. Tóth, B., Werner, W.: The true self-repelling motion. Probab. Theory Relat. Fields 111(3), 375–452 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  273. Villain, J.: Theory of one-and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet. J. Phys. 36, 581–590 (1975)

    Article  Google Scholar 

  274. Wang, W., Machta, J., Katzgraber, H.G.: Evidence against a mean field description of short-range spin glasses revealed through thermal boundary conditions. Phys. Rev. B 90, 184412 (2014)

    Article  Google Scholar 

  275. Werner, W., Wu, H.: From CLE\((\kappa )\) to SLE\((\kappa,\rho )\)’s. Electron. J. Probab. 18, 1–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  276. Wilson, K.G.: The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)

    Article  MathSciNet  Google Scholar 

  277. Wilson, K.G.: The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983)

    Article  MathSciNet  Google Scholar 

  278. Wilson, K.G., Kogut, J.: The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75–199 (1974)

    Article  Google Scholar 

  279. Yang, C.N., Lee, T.D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87, 404–409 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  280. Yao, C.L.: Law of large numbers for critical first-passage percolation on the triangular lattice. Electron. Commun. Probab. 19, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  281. Yao, C.L.: Multi-arm incipient infinite clusters in 2D: scaling limits and winding numbers. Ann. Inst. H. Poincaré Probab. Statist. 54, 1848–1876 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  282. Yao, C.L.: Asymptotics for 2D critical and near-critical first-passage percolation (2018). arXiv:1806.03737

  283. Yao, C.L.: Limit theorems for critical first-passage percolation on the triangular lattice. Stoch. Proc. Appl. 128, 445–460 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  284. Yucesoy, B., Katzgraber, H.G., Machta, J.: Evidence of non-mean-field-like low-temperature behavior in the Edwards-Anderson spin-glass model. Phys. Rev. Lett. 109, 177204 (2012)

    Article  Google Scholar 

  285. Zamolodchikov, A.B.: Integrals of motion and S-matrix of the (scaled) \(t=t_c\) Ising model with magnetic field. Int. J. Mod. Phys. 4, 4235–4248 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camia, F., Stein, D.L. (2019). Probability Theory in Statistical Physics, Percolation, and Other Random Topics: The Work of C. Newman. In: Sidoravicius, V. (eds) Sojourns in Probability Theory and Statistical Physics - I. Springer Proceedings in Mathematics & Statistics, vol 298. Springer, Singapore. https://doi.org/10.1007/978-981-15-0294-1_1

Download citation

Publish with us

Policies and ethics