Skip to main content

Experimental Study of Nonlinear Long Wave Propogation Over a Fine Gravel Bed

  • Conference paper
  • First Online:
APAC 2019 (APAC 2019)

Included in the following conference series:

  • 3262 Accesses

Abstract

A series of laboratory experiments have been carried out to investigate nonlinear long wave propagation over a fine gravel bed, in which water surface elevation, shear flow inside the bottom boundary layer and excess pore pressures are measured to study the hydrodynamics in the water layer and the soil dynamics within the seabed, respectively. Analysis of the experimental results indicates that the nonlinearity has significant effects on the distribution of wave-induced pore pressure within the gravel bed and the free surface profile along the propagation direction. Traditional nonlinear wave theories should be modified to consider the wave energy dissipation within the seabed and bottom boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carstensen, S., Sumer, B. M., and Fredsøe, J. (2010). Coherent structures in wave boundary layers. Part 1 Oscillatory motion. Journal of Fluid Mechanics, 646: 169-206.

    Article  Google Scholar 

  • Chang, S. C., Lin, J. G., Chien, L. K., and Chiu, Y. F. (2007). An experimental study on non-linear progressive wave-induced dynamic stresses in seabed. Ocean Engineering, 34(17-18), 2311-2329.

    Article  Google Scholar 

  • Dominic, A., O’Donoghue, T., Alan, G. D., and Jan, S. R. (2011). Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow. Journal of Fluid Mechanics, 684: 251-283.

    Article  Google Scholar 

  • Garnier, E. I., Huang, Z. H., and Mei, C. C. (2013). Nonlinear long waves a muddy beach. Journal of Fluid Mechanics, 718: 371-397.

    Article  Google Scholar 

  • Hsu, J. R. C., and Jeng, D.-S. (1994). Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness. International Journal for Numerical & Analytical Methods in Geotechanics, 18(11): 785-807.

    Google Scholar 

  • Jeng, D. S. (2003). Wave-induced sea floor dynamics. Applied Mechanics Review, 56(4): 407-429.

    Article  Google Scholar 

  • Liu, P. L.-F. (1973). Damping of water waves over a porous bed. Journal of Hydraulic Division, ASCE, 99: 2263-2271.

    Google Scholar 

  • Liu, P. L.-F., Davis, M. H., and Downing, S. (1996). Wave-induced boundary layer flows above and in a permeable bed. Journal of Fluid Mechanics, 325: 195-218.

    Article  Google Scholar 

  • Liu, P. L.-F., Orfila, A. (2004). Viscous effects on transient long-wave propagation. Journal of Fluid Mechanics, 520: 83-92.

    Article  Google Scholar 

  • Liu, P. L.-F., Park, Y. S., and Lara, J. L. (2007). Long-wave-induced flows in an unsaturated permeable seabed. Journal of Fluid Mechanics, 586: 323-345.

    Article  Google Scholar 

  • Longuet-Higgins, M. S. (1953). Mass transport in water waves. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 245: 535-581.

    Article  Google Scholar 

  • Madsen, O. S. (1978). Wave-induced pore pressures and effective stresses in a porous bed. Géotechnique, 28(4): 377-393.

    Article  Google Scholar 

  • Mei, C. C., Stiassnie, M., and Yue, D. K. P. (2005). Theory and Applications of Ocean Surface Waves. London: World Scientific.

    Google Scholar 

  • Mei, C. C., Krotov, M., Huang, Z. H., and Huge H. (2010). Short and long waves over a muddy seabed. Journal of Fluid Mechanics, 643: 33-58.

    Article  Google Scholar 

  • Packwood, A. R., Peregrine, D. H. (1980). Loss of water wave energy due to percolation in a permeable sea bottom. Coastal Engineering, 3: 221-242

    Google Scholar 

  • Park, Y. S., and Liu, P. L.-F. (2010). Oscillatory pipe flows of a yield-stress fluid. Journal of Fluid Mechanics, 658: 211-228.

    Article  Google Scholar 

  • Park, Y. S., Liu, P. L. -F., and Clark, S. J. (2008). Viscous flows in a muddy seabed induced by a solitary wave. Journal of Fluid Mechanics, 598: 383-392.

    Article  Google Scholar 

  • Qi, W. G., Li C. F., Jeng, D. S., Gao, F. P., Liang, Z. D. (2019). Combined wave-current induced excess pore-pressure in a sandy seabed: Flume observations and comparisons with theoretical models. Coastal Engineering, 147, 89-98.

    Article  Google Scholar 

  • Sleath, J. F. A. (1987). Turbulent oscillatory flow over rough beds. Journal of Fluid Mechanics, 182: 369-409.

    Article  Google Scholar 

  • Sumer, B. M., Jensen, P. M., Sørensen, L. B., Fredsøe, J., Liu, P. L.-F., and Carstensen, S. (2010). Coherent structures in wave boundary layers. Part 2. Solitary motion[J]. Journal of Fluid Mechanics, 646: 207-231.

    Article  Google Scholar 

  • Tong, L. L., Zhang, J. S., Sun, K., Guo, Y. K., Zheng, J. H., and Jeng, D. S. (2018). Experimental study on soil response and wave attenuation in a silt bed. Ocean Engineering, 160: 105-118.

    Article  Google Scholar 

  • Yamamoto T, Koning H L, Sellmeijer H, and Hijum E. P. V. (1978). On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics, 87(1): 193-206.

    Article  Google Scholar 

  • Zhang, J. S., Tong, L. L., Zheng, J. H., He, R., and Guo, Y. K. (2018). Effects of soil-resistance damping on wave-induced pore pressure accumulation around a composite breakwater. Journal of Coastal Research, 34(3): 573-585.

    Article  Google Scholar 

  • Zhang, J. S., Sun, K., Zhai, Y. Y., Zhang, H., and Zhang, C. (2016). Physical study on interactions between waves and a well-mixed seabed. Journal of Coastal Research, 75: 198-202.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the National Science Fund for Distinguished Young Scholars (Grant No. 51425901), the National Key Research and Development Program of China (2017YFC1404200), and the 111 Project (Grant No. B12032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, L.L., Zheng, J.H., Zhang, J.S., Qian, F.S. (2020). Experimental Study of Nonlinear Long Wave Propogation Over a Fine Gravel Bed. In: Trung Viet, N., Xiping, D., Thanh Tung, T. (eds) APAC 2019. APAC 2019. Springer, Singapore. https://doi.org/10.1007/978-981-15-0291-0_10

Download citation

Publish with us

Policies and ethics