Skip to main content

Online Compensation Manufacturing

  • Chapter
  • First Online:
  • 328 Accesses

Abstract

The manufacturing error is a very important factor that influences the quality of workpieces, which will obviously reduce the manufacturing accuracy of the workpieces. Excessive manufacturing errors may even cause the workpieces to be scrapped and seriously affect the manufacturing efficiency and benefits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yang MY, Choi JG (1998) Tool deflection compensation system for end milling accuracy improvement. J Manuf Sci Eng 120(2):222–229

    Article  Google Scholar 

  2. Johnstone S, Peyton AJ (2001) The application of parametric 3D finite element modeling techniques to evaluate the performance of a magnetic sensor system. Sensors Actuat 93(2):109–116

    Article  CAS  Google Scholar 

  3. Lee DM, Choi SG (2004) Application of on-line adaptable Neural Network for the rolling force set-up of a plate mill. Eng Appl Artif Intell 17(5):557–565

    Article  Google Scholar 

  4. Watanabe T, Iwai S (2006) A control system to improve the accuracy of finished surfaces in milling. J Dyn Syst Meas Contr 105(3):192–199

    Article  Google Scholar 

  5. Liang HB, Li X (2009) A 5-axis milling system based on a New G code for NURBS surface. In: IEEE international conference on intelligent computing and intelligent systems, pp 600–603

    Google Scholar 

  6. Yuan G (2010) Online detecting system of roller wear based on laser-linear array CCD technology. Int Soc Opt Eng 76(1):467–479

    Google Scholar 

  7. Chen LX (2018) Online real-time control method for product manufacturing process. U.S. Patent No. 9891614

    Google Scholar 

  8. Available: introducing the latest in high-definition, non-contact metrology Shapix 1500 series. http://www.coherix.com

  9. Du S, Liu C, Huang D (2015) A shearlet-based separation method of 3D engineering surface using high definition metrology. Precis Eng 40:55–73

    Article  Google Scholar 

  10. Du S, Liu C, Xi L (2015) A selective multiclass support vector machine ensemble classifier for engineering surface classification using high definition metrology. J Manuf Sci Eng 137(1):011003-1-15

    Google Scholar 

  11. Du SC, Huang DL, Wang H (2015) An adaptive support vector machine-based workpiece surface classification system using high-definition metrology. IEEE Trans Instrum Meas 64(10):2590–2604

    Article  Google Scholar 

  12. Du S, Fei L (2016) Co-kriging method for form error estimation incorporating condition variable measurements. J Manuf Sci Eng 138(4):041003-1-16

    Google Scholar 

  13. Wang M, Ken T, Du S, Xi L (2015) Tool wear monitoring of wiper inserts in multi-insert face milling using three-dimensional surface form indicators. J Manuf Sci Eng 137(3):031006-1-8

    Google Scholar 

  14. Wang M, Shao YP, Du SC, Xi LF (2015) A diffusion filter for discontinuous surface measured by high definition metrology. Int J Prec Eng Manuf 16(10):2057–2062

    Article  Google Scholar 

  15. Wang M, Xi L, Du S (2014) 3D surface form error evaluation using high definition metrology. Prec Eng 38(1):230–236

    Article  Google Scholar 

  16. Suriano S, Wang H, Shao C, Hu SJ, Sekhar P (2015) Progressive measurement and monitoring for multi-resolution data in surface manufacturing considering spatial and cross correlations. IIE Trans (ahead-of-print), pp 1–20

    Article  Google Scholar 

  17. Nguyen HT, Wang H, Tai BL, Ren J, Hu SJ, Shih A (2016) High-definition metrology enabled surface variation control by cutting load balancing. J Manuf Sci Eng 138(2):021010-1-11

    Google Scholar 

  18. Cho H, Luck R, Stevens JW (2015) An improvement on the standard linear uncertainty quantification using a least-squares method. J Uncert Anal Appl 3(1):1–13

    Article  Google Scholar 

  19. Hongn M, Larsen SF, Gea M, Altamirano M (2015) Least square based method for the estimation of the optical end loss of linear Fresnel concentrators. Sol Energy 111:264–276

    Article  Google Scholar 

  20. Anselone P, Rall L (1968) The solution of characteristic value-vector problems by Newton’s method. Numer Math 11(1):38–45

    Article  Google Scholar 

  21. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  Google Scholar 

  22. Kim T, Im YJ (2003) Automatic satellite image registration by combination of matching and random sample consensus. IEEE Trans Geosci Remote Sens 41(5):1111–1117

    Article  Google Scholar 

  23. Yaniv Z (2010) Random sample consensus (RANSAC) algorithm, a generic implementation. Imaging

    Google Scholar 

  24. Raguram R, Chum O, Pollefeys M, Matas J, Frahm J (2013) Usac: a universal framework for random sample consensus. IEEE Trans Pattern Anal Mach Intell 35(8):2022–2038

    Article  Google Scholar 

  25. Leon SJ, Björck Å, Gander W (2013) Gram-schmidt orthogonalization: 100 years and more. Numer Linear Algebra Appl 20(3):492–532

    Article  Google Scholar 

  26. Pomerleau F, Colas F, Siegwart R, Magnenat S (2013) Comparing ICP variants on real-world data sets. Auton Robots 34(3):133–148

    Article  Google Scholar 

  27. Di Maio F, Bandini A, Zio E, Alfonsi A, Rabiti C (2016) An approach based on support vector machines and a K-D Tree search algorithm for identification of the failure domain and safest operating conditions in nuclear systems. Prog Nucl Energy 88:297–309

    Article  Google Scholar 

  28. Schauer J, Nüchter A (2014) Efficient point cloud collision detection and analysis in a tunnel environment using kinematic laser scanning and KD tree search. Int Arch Photogramm Remote Sens Spatial Inf Sci 40(3):289–295

    Article  Google Scholar 

  29. Besl PJ, McKay HD (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  30. Du S, Xi L (2011) Fault diagnosis in assembly processes based on engineering-driven rules and PSOSAEN algorithm. Comput Ind Eng 60(1):77–88

    Article  Google Scholar 

  31. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intelligence 1(1):33–57

    Article  Google Scholar 

  32. Coello CAC, LechugaMS (2002) MOPSO: a proposal for multiple objective particle Sswarm optimization. In: IEEE Proceedings of the 2002 congress on evolutionary computation, pp 1051–1056

    Google Scholar 

  33. Reyes-Sierra M, Coello CC (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    Google Scholar 

  34. Zhang Y, Gong D, Zhang J (2013) Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103:172–185

    Article  Google Scholar 

  35. Halcon Solution Guide III-C 3D Vision. http://download.mvtec.com/halcon-9.0-solution-guide-iii-c-3d-vision.pdf

  36. Dorsch R, Häusler G, Herrmann J (1994) Laser triangulation: fundamental uncertainty in distance measurement. Appl Opt 33(7):1306–1314

    Article  CAS  Google Scholar 

  37. Huang DL, Du SC, Li GL, Wu ZQ (2017) A Systemic approach for on-line minimizing volume difference of multiple chambers with casting surfaces in machining processes based on high definition metrology. J Manuf Sci Eng 139(8):081003-1-17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, S., Xi, L. (2019). Online Compensation Manufacturing. In: High Definition Metrology Based Surface Quality Control and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0279-8_8

Download citation

Publish with us

Policies and ethics