Skip to main content
  • 385 Accesses

Abstract

As an effective tool for quality control, statistical process control (SPC) has been widely used in various industries for special cause identification, removal and variation reduction (Montgomery in Introduction to statistical quality control. Wiley, 2007 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montgomery DC (2007) Introduction to statistical quality control. Wiley

    Google Scholar 

  2. Colosimo BM, Semeraro Q, Pacella M (2008) Statistical process control for geometric specifications: on the monitoring of roundness profiles. J Qual Technol 40(1):1–18

    Article  Google Scholar 

  3. Williams JD, Woodall WH, Birch JB (2007) Statistical monitoring of nonlinear product and process quality profiles. Qual Reliab Eng Int 23(8):925–941

    Article  Google Scholar 

  4. Colosimo BM, Mammarella F, Petrò S (2010) Quality control of manufactured surfaces. Front Stat Qual Control: 55–70

    Google Scholar 

  5. Chen S, Nembhard HB (2011) A high-dimensional control chart for profile monitoring. Qual Reliab Eng Int 27(4):451–464

    Article  CAS  Google Scholar 

  6. Colosimo BM, Cicorella P, Pacella M, Blaco M (2014) From profile to surface monitoring: SPC for cylindrical surfaces via gaussian processes. J Qual Technol 46(2):95–113

    Article  Google Scholar 

  7. Wang A, Wang K, Tsung F (2014) Statistical surface monitoring by spatial-structure modeling. J Qual Technol 46(4):359–376

    Article  Google Scholar 

  8. Woodall WH (2007) Current research on profile monitoring. Produção 17(3):420–425

    Google Scholar 

  9. Etesami F (1988) Tolerance verification through manufactured part modeling. J Manuf Syst 7(3):223–232

    Article  Google Scholar 

  10. Xia H, Ding Y, Wang J (2008) Gaussian process method for form error assessment using coordinate measurements. IIE Trans 40(10):931–946

    Article  Google Scholar 

  11. Wang H, Suriano S, Zhou L, Hu SJ (2009) High-definition metrology based spatial variation pattern analysis for machining process monitoring and diagnosis. In: ASME 2009 International manufacturing science and engineering conference, pp 471–480

    Google Scholar 

  12. Suriano S, Wang H, Hu SJ (2012) Sequential monitoring of surface spatial variation in automotive machining processes based on high definition metrology. J Manuf Syst 31(1):8–14

    Article  Google Scholar 

  13. Suriano S, Wang H, Shao C, Hu SJ, Sekhar P (2015) Progressive measurement and monitoring for multi-resolution data in surface manufacturing considering spatial and cross correlations. IIE Trans 47(10):1033–1052

    Article  Google Scholar 

  14. Wang K, Tsung F (2010) Using profile monitoring techniques for a data-rich environment with huge sample size. Qual Reliab Eng Int 21(7):677–688

    Article  Google Scholar 

  15. Wells LJ, Megahed FM, Niziolek CB, Camelio JA, Woodall WH (2013) Statistical process monitoring approach for high-density point clouds. J Intell Manuf 24(6):1267–1279

    Article  Google Scholar 

  16. He K, Zhang M, Zuo L, Alhwiti T, Megahed FM (2017) Enhancing the monitoring of 3D scanned manufactured parts through projections and spatiotemporal control charts. J Intell Manuf 28(4):899–911

    Article  Google Scholar 

  17. Roth JT, Djurdjanovic D, Yang X, Mears L, Kurfess T (2010) Quality and inspection of machining operations: tool condition monitoring. J Manuf Sci Eng 132(4):575–590

    Article  Google Scholar 

  18. Castejón M, Alegre E, Barreiro J, Hernández LK (2007) On-line tool wear monitoring using geometric descriptors from digital images. Int J Mach Tools Manuf 47(12):1847–1853

    Article  Google Scholar 

  19. Jurkovic J, Korosec M, Kopac J (2005) New approach in tool wear measuring technique using CCD vision system. Int J Mach Tools Manuf 45(9):1023–1030

    Article  Google Scholar 

  20. Kerr D, Pengilley J, Garwood R (2006) Assessment and visualisation of machine tool wear using computer vision. Int J Adv Manuf Technol 28(7–8):781–791

    Article  Google Scholar 

  21. Pfeifer T, Wiegers L (2000) Reliable tool wear monitoring by optimized image and illumination control in machine vision. Measurement 28(3):209–218

    Article  Google Scholar 

  22. Shahabi HH, Ratnam MM (2009) In-cycle monitoring of tool nose wear and surface roughness of turned parts using machine vision. Int J Adv Manuf Technol 40(11–12):1148–1157

    Article  Google Scholar 

  23. Wang X, Kwon PY (2014) WC/Co tool wear in dry turning of commercially pure aluminium. J Manuf Sci Eng 136(3):031006-1-7

    Google Scholar 

  24. Kious M, Ouahabi A, Boudraa M, Serra R, Cheknane A (2010) Detection process approach of tool wear in high speed milling. Measurement 43(10):1439–1446

    Article  Google Scholar 

  25. Oraby SE, Al-Modhuf AF, Hayhurst DR (2004) A diagnostic approach for turning tool based on the dynamic force signals. J Manuf Sci Eng 127(3):463–475

    Article  Google Scholar 

  26. Kaya B, Oysu C, Ertunc HM (2011) Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks. Adv Eng Softw 42(3):76–84

    Article  Google Scholar 

  27. Alonso FJ, Salgado DR (2008) Analysis of the structure of vibration signals for tool wear detection. Mech Syst Signal Process 22(3):735–748

    Article  Google Scholar 

  28. Bovic K, Pierre D, Xavier C (2011) Tool wear monitoring by machine learning techniques and singular spectrum analysis. Mech Syst Signal Process 25(1):400–415

    Article  Google Scholar 

  29. Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Manuf 47(14):2140–2152

    Article  Google Scholar 

  30. Wang H (2015) Progressive measurement and monitoring for multi-resolution data in surface manufacturing considering spatial and cross correlations. IIE Trans 47(10):1–20

    Google Scholar 

  31. Marinescu I, Axinte DA (2008) A critical analysis of effectiveness of acoustic emission signals to detect tool and workpiece malfunctions in milling operations. Int J Mach Tools Manuf 48(10):1148–1160

    Article  Google Scholar 

  32. Yen CL, Lu MC, Chen JL (2013) Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting. Mech Syst Signal Process 34(1–2):353–366

    Article  Google Scholar 

  33. Attanasio A, Ceretti E, Giardini C, Cappellini C (2013) Tool wear in cutting operations: experimental analysis and analytical models. J Manuf Sci Eng 135(5):051012-1-11

    Google Scholar 

  34. Dutta S, Datta A, Chakladar ND, Pal SK, Mukhopadhyay S, Sen R (2012) Detection of tool condition from the turned surface images using an accurate grey level co-occurrence technique. Precis Eng 36(3):458–466

    Article  Google Scholar 

  35. Kassim AA, Mannan MA, Zhu M (2007) Texture analysis methods for tool condition monitoring. Image Vis Comput 25(7):1080–1090

    Article  Google Scholar 

  36. Wilkinson P, Reuben RL, Jones JDC, Barton JS, Hand DP, Carolan TA, Kidd SR (1997) Surface finish parameters as diagnostics of tool wear in face milling. Wear 205(1–2):47–54

    Article  CAS  Google Scholar 

  37. Dutta S, Pal SK, Mukhopadhyay S, Sen R (2013) Application of digital image processing in tool condition monitoring: A review. CIRP J Manufact Sci Technol 6(3):212–232

    Article  Google Scholar 

  38. ISO 25178-602:2012 (2010) Geometrical product specifications (GPS)—surface texture: areal-part 602: nominal characteristics of non-contact (confocal chromatic probe) instruments

    Google Scholar 

  39. Huang Z, Shih AJ, Ni J (2006) Laser interferometry hologram registration for three-dimensional precision measurements. J Manuf Sci Eng 128(4):887–896

    Article  Google Scholar 

  40. Stephenson DA, Ni J (2010) A multifeature approach to tool wear estimation using 3D workpiece surface texture parameters. J Manuf Sci Eng 132(6):1033–1041

    Google Scholar 

  41. Wang M, Xi L, Du S (2014) 3D surface form error evaluation using high definition metrology. Precis Eng 38(1):230–236

    Article  Google Scholar 

  42. Jr AMDS, Sales WF, Santos SC, Machado AR (2005) Performance of single Si 3N 4 and mixed Si 3N 4 +PCBN wiper cutting tools applied to high speed face milling of cast iron. Int J Mach Tools Manuf 45(3):335–344

    Article  Google Scholar 

  43. Astakhov VP (2004) The assessment of cutting tool wear. Int J Mach Tools Manuf 44(6):637–647

    Article  Google Scholar 

  44. Dutta S, Kanwat A, Pal SK, Sen R (2013) Correlation study of tool flank wear with machined surface texture in end milling. Measurement 46(10):4249–4260

    Article  Google Scholar 

  45. Al-Kindi Ghassan, Zughaer Hussien (2012) An approach to improved CNC machining using vision-based system. Adv Manuf Process 27(7):765–774

    Article  CAS  Google Scholar 

  46. Hai TN, Wang H, Hu SJ (2012) Chacterization of cutting force induced surface shape variation using high-definition metrology. J Manuf Sci Eng 135:641–650

    Google Scholar 

  47. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  48. Huang DL, Du SC, Li GL, Wu ZQ (2017) A systemic approach for on-line minimizing volume difference of multiple chambers with casting surfaces in machining processes based on high definition metrology. J Manuf Sci Eng 139(8):081003-1-17

    Google Scholar 

  49. Wang K, Wei J, Bo L (2015) A spatial variable selection method for monitoring product surface. Int J Prod Res 54(14):1–21

    Google Scholar 

  50. He Z, Zuo L, Zhang M, Megahed FM (2012) An image-based multivariate generalized likelihood ratio control chart for detecting and diagnosing multiple faults in manufactured products. Int J Prod Res 54(6):1771–1784

    Article  Google Scholar 

  51. Sullivan JH (2002) Detection of multiple change points from clustering individual observation. J Qual Technol 34(4):374–383

    Article  Google Scholar 

  52. Woodall WH, Dan JS, Montgomery DC, Gupta S (2004) Using control charts to monitor process and product quality profiles. J Qual Technol 36(3):309–320

    Article  Google Scholar 

  53. Du S, Liu C, Huang D (2015) A shearlet-based separation method of 3D engineering surface using high definition metrology. Precis Eng 40:55–73

    Article  Google Scholar 

  54. Du S, Liu C, Xi L (2015) A selective multiclass support vector machine ensemble classifier for engineering surface classification using high definition metrology. J Manuf Sci Eng 137(1):011003-1-15

    Google Scholar 

  55. Du SC, Huang DL, Wang H (2015) An adaptive support vector machine-based workpiece surface classification system using high-definition metrology. IEEE Trans Instrum Meas 64(10):2590–2604

    Article  Google Scholar 

  56. Du S, Fei L (2016) Co-kriging method for form error estimation incorporating condition variable measurements. J Manuf Sci & Eng 138(4):o41003-1-16

    Google Scholar 

  57. Wang M, Ken T, Du S, Xi L (2015) Tool wear monitoring of wiper inserts in multi-insert face milling using three-dimensional surface form indicators. J Manuf Sci Eng 137(3):031006-1-8

    Google Scholar 

  58. Wang M, Shao YP, Du SC, Xi LF (2015) A diffusion filter for discontinuous surface measured by high definition metrology. Int J Precis Eng Manuf 16(10):2057–2062

    Article  Google Scholar 

  59. Hai N, Wang H, Tai BL, Ren J, Hu SJ, Shih AJ (2016) High-definition metrology enabled surface variation control by cutting load balancing. J Manuf Sci Eng 138(2):021010-1-11

    Google Scholar 

  60. Wells, L. J., Shafae, M. S., and Camelio, J. A., 2016, “Automated surface defect detection using high-density data,” Journal of Manufacturing Science & Engineering, 138(7), pp. 071001-1-10

    Google Scholar 

  61. Chen Q, Yang S, Li Z (1999) Surface roughness evaluation by using wavelets analysis. Precis Eng 23(3):209–212

    Article  Google Scholar 

  62. Lu C, Troutman JR, Schmitz TL, Ellis JD, Tarbutton JA (2016) Application of the continuous wavelet transform in periodic error compensation. Precis Eng 44:245–251

    Article  Google Scholar 

  63. Xu J, Yamada K, Seikiya K, Tanaka R, Yamane Y (2014) Effect of different features to drill-wear prediction with back propagation neural network. Precis Eng 38(4):791–798

    Article  Google Scholar 

  64. Barnhill RE, Pottmann OH (1992) Fat surfaces: a trivariate approach to triangle-based interpolation on surfaces. Comput Aided Geom Des 9(5):365–378

    Article  Google Scholar 

  65. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  Google Scholar 

  66. Raguram R, Chum O, Pollefeys M, Matas J, Frahm JM (2013) USAC: a universal framework for random sample consensus. IEEE Trans Pattern Anal Mach Intell 35(8):2022–2038

    Article  Google Scholar 

  67. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496

    Article  CAS  Google Scholar 

  68. Flitney RK (2011) Seals and sealing handbook. Elsevier

    Google Scholar 

  69. Persson BNJ, Yang C (2008) Theory of the leak-rate of seals. J Phys Condens Matter 20

    Google Scholar 

  70. Aharony A, Stauffer D (2003) Introduction to percolation theory. Taylor & Francis

    Google Scholar 

  71. Persson BNJ, Albohr O, Creton C, Peveri V (2004) Contact area between a viscoelastic solid and a hard, randomly rough, substrate. J Chem Phys 120:8779–8793

    Article  CAS  Google Scholar 

  72. Lorenz B, Persson BNJ (2009) Leak rate of seals: comparison of theory with experiment. EPL 86

    Google Scholar 

  73. Lorenz B, Persson BNJ (2010) Leak rate of seals: effective-medium theory and comparison with experiment. Eur Phys J E 31:159–167

    Article  CAS  Google Scholar 

  74. Bottiglione F, Carbone G, Mangialardi L, Mantriota G (2009) Leakage mechanism in flat seals. J Appl Phys 106

    Article  CAS  Google Scholar 

  75. Bottiglione F, Carbone G, Mantriota G (2009) Fluid leakage in seals: an approach based on percolation theory. Tribol Int 42:731–737

    Article  CAS  Google Scholar 

  76. Marie C, Lasseux D (2007) Experimental leak-rate measurement through a static metal seal. J Fluids Eng 129:799–805

    Article  Google Scholar 

  77. Robbe-Valloire F, Prat M (2008) A model for face-turned surface microgeometry. Application to the analysis of metallic static seals. Wear 264:980–989

    Article  CAS  Google Scholar 

  78. Okada H, Itoh T, Suga T (2008) The influence of surface profiles on leakage in room temperature seal-bonding. Sens Actuators A 144:124–129

    Article  CAS  Google Scholar 

  79. Haruyama S, Nurhadiyanto D, Choiron MA, Kaminishi K (2013) Influence of surface roughness on leakage of new metal gasket. Int J Press Vessels Pip 111–112:146–154

    Article  Google Scholar 

  80. Marie C, Lasseux D, Zahouani H, Sainsot P (2003) An integrated approach to characterize liquid leakage through metal contact seal. Eur J Mech Environ Eng 48:81–86

    Google Scholar 

  81. Ledoux Y, Lasseux D, Favreliere H, Samper S, Grandjean J (2011) On the dependence of static flat seal efficiency to surface defects. Int J Press Vessels Pip 88:518–529

    Article  Google Scholar 

  82. Malburg MC (2003) Surface profile analysis for conformable interfaces. J Manuf Sci Eng 125:624–627

    Article  Google Scholar 

  83. Liao Y, Stephenson DA, Ni J (2012) Multiple-scale wavelet decomposition, 3D surface feature exaction and applications. J Manuf Sci Eng 134

    Google Scholar 

  84. Ren J, Park C, Wang H (2018) Stochastic modeling and diagnosis of leak areas for surface assembly. J Manuf Sci Eng 140:041011–10

    Google Scholar 

  85. Arghavani J, Derenne M, Marchand L (2002) Prediction of gasket leakage rate and sealing performance through fuzzy logic. Int J Adv Manuf Technol 20:612–620

    Article  Google Scholar 

  86. Xin L, Gaoliang P (2016) Research on leakage prediction calculation method for static seal ring in underground equipments. J Mech Sci Technol 30:2635–2641

    Article  Google Scholar 

  87. Du S, Liu T, Huang D, Li G (2018) A fast and adaptive bi-dimensional empirical mode decomposition approach for filtering of workpiece surfaces using high definition metrology. J Manuf Syst 46:247–263

    Article  Google Scholar 

  88. Shao Y, Du S, Xi L (2017) 3D machined surface topography forecasting with space-time multioutput support vector regression using high definition metrology, V001T02A69

    Google Scholar 

  89. ISO 16610-22 (2015) Geometrical product specifications (GPS)-filtration part 22: linear profile filters: spline filter

    Google Scholar 

  90. ISO 16610-1 (2015) Geometrical product specifications (GPS)-filtration part 1: overview and basic concepts

    Google Scholar 

  91. Krystek M (1996) Form filtering by splines. Measurement 18:9–15

    Article  Google Scholar 

  92. Maragos P, Schafer R (1987) Morphological filters–part I: their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Trans Acoust Speech Signal Process 35:1153–1169

    Article  Google Scholar 

  93. ISO 16610-40 (2015) Geometrical product specifications (GPS)-filtration part 40: morphological profile filters: basic concepts

    Google Scholar 

  94. ISO 16610-41 (2015) Geometrical product specifications (GPS)-filtration part 41: morphological profile filters: disk and horizontal line-segment filters

    Google Scholar 

  95. ISO 16610-85 (2015) Geometrical product specifications (GPS)-filtration part 85: morphological areal filters: segmentation

    Google Scholar 

  96. ISO 25178-2 (2012) Geometrical product specifications (GPS)-surface texture: areal part 2: terms, definitions and surface texture parameters

    Google Scholar 

  97. ISO 4287 (1997) Geometrical product specifications (GPS)-surface texture: profile method: terms, definitions and surface texture parameters.

    Google Scholar 

  98. Hyun S, Pel L, Molinari JF, Robbins MO (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E-Stat, Nonlinear, Soft Matter Phys 70:026117

    Article  CAS  Google Scholar 

  99. Megalingam A, Mayuram MM (2012) Comparative contact analysis study of finite element method based deterministic, simplified multi-asperity and modified statistical contact models. J Tribol 134:014503

    Article  Google Scholar 

  100. Johnson KL (1985) Contact mechanics. Cambridge University Press, New York

    Google Scholar 

  101. Huang D, Du S, Li G et al (2018) Detection and monitoring of defects on three-dimensional curved surfaces based on high-density point cloud data. Precis Eng 53:79–95

    Article  Google Scholar 

  102. Shao Y, Yin Y, Du S et al (2018) Leakage monitoring in static sealing interface based on three dimensional surface topography indicator. J Manuf Sci Eng 140(10):101003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, S., Xi, L. (2019). Surface Monitoring. In: High Definition Metrology Based Surface Quality Control and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0279-8_6

Download citation

Publish with us

Policies and ethics