Skip to main content

Chitosan-Based Nanoformulation as Carriers of Small Molecules for Tissue Regeneration

  • Chapter
  • First Online:
Book cover Functional Chitosan

Abstract

This chapter traces the growth of nanoformulations and the role of biopolymers in the field of medicine and nanomedicine in particular. Keeping in mind the vast literature available in this field, the chapter provides the reader an insight into the developments relating to use of one of the biopolymers, viz., chitosan. While highlighting the developments, extensive care is taken to provide an overall understanding of the subject while providing the literature support for detailed analysis. The chapter highlights the significance and facile maneuverability of chitosan to yield hydrogels and polyplexes that are ideally suited for tissue engineering applications. The chapter closes with the introduction to 3D printing technologies which are likely to take over the tissue regeneration field in a massive way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamkiewicz M, Rubinsky B (2015) Cryogenic 3D printing for tissue engineering. Cryobiology 71(3):518–521

    CAS  PubMed  Google Scholar 

  • Anitha A, Chennazhi KP, Nair SV, Jayakumar R (2012) 5-flourouracil loaded N,O-carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J Biomed Nanotechnol 8(1):29–42

    CAS  PubMed  Google Scholar 

  • Atala A, Kim W, Paige KT, Vacanti CA, Retik AB (1994) Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol 152(2):641–643

    CAS  PubMed  Google Scholar 

  • Babin J, Pelletier M, Lepage M, Allard JF, Morris D, Zhao Y (2009) A new two-photon-sensitive block copolymer nanocarrier. Angew Chem Int Ed 48(18):3329–3332

    CAS  Google Scholar 

  • Badawi A, Ahmed EM, Mostafa NY, Abdel-Wahab F, Alomairy SE (2017) Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J Mater Sci Mater Electron 28(15):10877–10884

    CAS  Google Scholar 

  • Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bae Y, Lee YH, Lee S, Han J, Ko KS, Choi JS (2016) Characterization of glycol chitosan grafted with low molecular weight polyethylenimine as a gene carrier for human adipose-derived mesenchymal stem cells. Carbohydr Polym 153:379–390

    CAS  PubMed  Google Scholar 

  • Balakrishnan B, Soman D, Payanam U, Laurent A, Labarre D, Jayakrishnan A (2017) A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomater 53:343–354

    CAS  PubMed  Google Scholar 

  • Bano I, Arshad M, Yasin T, Ghauri MA, Younus M (2017) Chitosan: a potential biopolymer for wound management. Int J Biol Macromol 102:380–383

    CAS  PubMed  Google Scholar 

  • Baranwal A, Kumar A, Priyadharshini A, Oggu GS, Bhatnagar I, Srivastava A et al (2018) Chitosan: an undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 110:110–123

    CAS  PubMed  Google Scholar 

  • Bernkop-Schnurch A, Clausen AE, Hnatyszyn M (2001) Thiolated polymers: synthesis and in vitro evaluation of polymer-cysteamine conjugates. Int J Pharm 226(1–2):185–194

    CAS  PubMed  Google Scholar 

  • Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471

    PubMed  Google Scholar 

  • Binning J, Woodburn J, Bus SA, Barn R (2019) Motivational interviewing to improve adherence behaviours for the prevention of diabetic foot ulceration. Diabetes Metab Res Rev 35(2):11

    Google Scholar 

  • Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    CAS  PubMed  Google Scholar 

  • Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Investig 117(5):1219–1222

    CAS  PubMed  Google Scholar 

  • Brezaniova I, Trousil J, Cernochova Z, Kral V, Hruby M, Stepanek P et al (2017) Self-assembled chitosan-alginate polyplex nanoparticles containing temoporfin. Colloid Polym Sci 295(8):1259–1270

    CAS  Google Scholar 

  • Cai SJ, Li CW, Weihs D, Wang GJ (2017) Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities. Sci Technol Adv Mater 18(1):987–996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Z, Dou C, Dong SW (2014) Scaffolding biomaterials for cartilage regeneration. J Nanomater 8:489128

    Google Scholar 

  • Chandika P, Ko SC, Jung WK (2015) Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biol Macromol 77:24–35

    CAS  PubMed  Google Scholar 

  • Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V et al (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12):31

    Google Scholar 

  • Chen FM, Liu XH (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    CAS  PubMed  Google Scholar 

  • Chen Z, Li N, Li SB, Dharmarwardana M, Schlimme A, Gassensmith JJ (2016) Viral chemistry: the chemical functionalization of viral architectures to create new technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(4):512–534

    PubMed  Google Scholar 

  • Colaco M, Igel DA, Atala A (2018) The potential of 3D printing in urological research and patient care. Nat Rev Urol 15(4):213–221

    PubMed  Google Scholar 

  • De Francesco EM, Sims AH, Maggiolini M, Sotgia F, Lisanti MP (2017) Clarke RB. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1 alpha/VEGF pathway in the breast tumor microenvironment. Breast Cancer Res 19:14

    Google Scholar 

  • De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    PubMed  PubMed Central  Google Scholar 

  • Dehaini D, Fang RH, Zhang LF (2016) Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 1(1):30–46

    PubMed  PubMed Central  Google Scholar 

  • Deng YM, Ren JN, Chen GP, Li GE, Wu XW, Wang GF et al (2017) Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci Rep 7:13

    Google Scholar 

  • Depan D, Surya P, Girase B, Misra RDK (2011) Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater 7(5):2163–2175

    CAS  PubMed  Google Scholar 

  • Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301

    CAS  PubMed  Google Scholar 

  • Du HL, Cai XQ, Zhai GX (2013) Advances in the targeting molecules modified chitosan-based nanoformulations. Curr Drug Targets 14(9):1034–1052

    CAS  PubMed  Google Scholar 

  • Duceppe N, Tabrizian M (2009) Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials 30(13):2625–2631

    CAS  PubMed  Google Scholar 

  • Fan HL, Wang LL, Zhao KK, Li N, Shi ZJ, Ge ZG et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11(9):2345–2351

    CAS  PubMed  Google Scholar 

  • Fan LH, Yang J, Wu H, Hu ZH, Yi JY, Tong J et al (2015) Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity. Int J Biol Macromol 79:830–836

    CAS  PubMed  Google Scholar 

  • Fathabadi EG, Shelling AN, Al-Kassas R (2012) Nanocarrier systems for delivery of siRNA to ovarian cancer tissues. Expert Opin Drug Deliv 9(7):743–754

    CAS  PubMed  Google Scholar 

  • Fernandes R, Tsao CY, Hashimoto Y, Wang L, Wood TK, Payne GF et al (2007) Magnetic nanofactories: Localized synthesis and delivery of quorum-sensing signaling molecule autoinducer-2 to bacterial cell surfaces. Metab Eng 9(2):228–239

    CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165(7–8):1628–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    CAS  PubMed  Google Scholar 

  • Gao Y, Liu XL, Li XR (2011) Research progress on siRNA delivery with nonviral carriers. Int J Nanomedicine 6:1017–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghobril C, Grinstaff MW (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44(7):1820–1835

    CAS  PubMed  Google Scholar 

  • Ghosn B, van de Ven AL, Tam J, Gillenwater A, Sokolov KV, Richards-Kortum R et al (2010) Efficient mucosal delivery of optical contrast agents using imidazole-modified chitosan. J Biomed Opt 15(1):11

    Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering - current challenges and expanding opportunities. Science 295(5557):1009

    CAS  PubMed  Google Scholar 

  • Gu XS, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35(24):6143–6156

    CAS  PubMed  Google Scholar 

  • Guo P, Martin CR, Zhao YP, Ge J, Zare RN (2010) General method for producing organic nanoparticles using nanoporous membranes. Nano Lett 10(6):2202–2206

    CAS  PubMed  Google Scholar 

  • He W, Graf R, Vieth S, Ziener U, Landfester K, Crespy D (2016) The cushion method: a new technique for the recovery of hydrophilic nanocarriers. Langmuir 32(51):13669–13674

    CAS  PubMed  Google Scholar 

  • Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 11:2191–2208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Hong PZ, Liao MN, Kong SZ, Huang N, Ou CY et al (2016) Preparation and characterization of chitosan-agarose composite films. Materials 9(10):9

    Google Scholar 

  • Huang YZ, Gao JQ, Lang WQ, Nakagawa S (2005) Preparation and characterization of liposomes encapsulating chitosan nanoparticles. Biol Pharm Bull 28(2):387–390

    CAS  PubMed  Google Scholar 

  • Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462(7272):426–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    CAS  PubMed  Google Scholar 

  • Jagani H, Rao JV, Palanimuthu VR, Hariharapura RC, Gang SA (2013) Nanoformulation of siRNA and its role in cancer therapy: in vitro and in vivo evaluation. Cell Mol Biol Lett 18(1):120–136

    CAS  PubMed  Google Scholar 

  • Jiang Q, Zhou W, Wang J, Tang RP, Zhang D, Wang X (2016) Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing. Int J Biol Macromol 91:85–91

    CAS  PubMed  Google Scholar 

  • Jiao J, Huang JJ, Zhang ZJ (2019) Hydrogels based on chitosan in tissue regeneration: how do they work? a mini review. J Appl Polym Sci 136(13):9

    Google Scholar 

  • Joorabloo A, Khorasani MT, Adeli H, Mansoori-Moghadam Z, Moghaddam A (2019) Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application. J Ind Eng Chem 70:253–263

    CAS  Google Scholar 

  • Kanwar JR, Mahidhara G, Kanwar RK (2012) Novel alginate-enclosed chitosan-calcium phosphate-loaded iron-saturated bovine lactoferrin nanocarriers for oral delivery in colon cancer therapy. Nanomedicine 7(10):1521–1550

    CAS  PubMed  Google Scholar 

  • Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    CAS  PubMed  Google Scholar 

  • Kirsner RS, Falanga V, Eaglstein WH (1998) The development of bioengineered skin. Trends Biotechnol 16(6):246–249

    CAS  PubMed  Google Scholar 

  • Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781

    CAS  Google Scholar 

  • Kotze AF, Luessen HL, de Leeuw BJ, de Boer BG, Verhoef JC, Junginger HE (1998) Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release 51(1):35–46

    PubMed  Google Scholar 

  • Kuo YC, Wang CC (2011) Surface modification with peptide for enhancing chondrocyte adhesion and cartilage regeneration in porous scaffolds. Colloids Surf B-Biointerfaces 84(1):63–70

    CAS  PubMed  Google Scholar 

  • Kuo YC, Wang CC (2012) Cartilage regeneration by culturing chondrocytes in scaffolds grafted with TATVHL peptide. Colloids Surf B-Biointerfaces 93:235–240

    CAS  PubMed  Google Scholar 

  • Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32(8):795–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lau C, Cooney MJ, Atanassov P (2008) Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 24(13):7004–7010

    CAS  PubMed  Google Scholar 

  • Lee SJ, Heo DN, Moon JH, Ko WK, Lee JB, Bae MS et al (2014) Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 111:530–537

    CAS  PubMed  Google Scholar 

  • Levengood SKL, Zhang MQ (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2(21):3161–3184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18

    CAS  PubMed  Google Scholar 

  • Li L, Wang N, Jin X, Deng R, Nie SH, Sun L et al (2014) Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 35(12):3903–3917

    CAS  PubMed  Google Scholar 

  • Li HJ, Tan C, Li L (2018) Review of 3D printable hydrogels and constructs. Mater Des 159:20–38

    CAS  Google Scholar 

  • Lino MM, Ferreira L (2018) Light-triggerable formulations for the intracellular controlled release of biomolecules. Drug Discov Today 23(5):1062–1070

    CAS  PubMed  Google Scholar 

  • Liu Y, Wang FQ, Shah Z, Cheng XJ, Kong M, Feng C et al (2016) Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids Surf B-Biointerfaces 145:492–501

    CAS  PubMed  Google Scholar 

  • Liu T, Dan WH, Dan NH, Liu XH, Liu XX, Peng X (2017) A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications. Mater Sci Eng C-Mater Biol Appl 77:202–211

    CAS  PubMed  Google Scholar 

  • Liu YX, Fang N, Liu B, Song LN, Wen BY, Yang DZ (2018a) Aligned porous chitosan/graphene oxide scaffold for bone tissue engineering. Mater Lett 233:78–81

    CAS  Google Scholar 

  • Liu F, Chen QH, Liu C, Ao Q, Tian XH, Fan J et al (2018b) Natural polymers for organ 3D bioprinting. Polymers 10(11):26

    Google Scholar 

  • Liu XC, You LJ, Tarafder S, Zou L, Fang ZX, Chen JD et al (2019) Curcumin-releasing chitosan/aloe membrane for skin regeneration. Chem Eng J 359:1111–1119

    CAS  Google Scholar 

  • Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA et al (2000) In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 21(18):1837–1845

    CAS  PubMed  Google Scholar 

  • Mayol L, De Stefano D, Campani V, De Falco F, Ferrari E, Cencetti C et al (2014) Design and characterization of a chitosan physical gel promoting wound healing in mice. J Mater Sci Mater Med 25(6):1483–1493

    CAS  PubMed  Google Scholar 

  • Medberry P, Dennis S, Van Hecke T, DeLong RK (2004) pDNA bioparticles: comparative heterogeneity, surface, binding and activity analyses. Biochem Biophys Res Commun 319(2):426–432

    CAS  PubMed  Google Scholar 

  • Minuth WW, Sittinger M, Kloth S (1998) Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res 291(1):1–11

    CAS  PubMed  Google Scholar 

  • Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136

    CAS  PubMed  Google Scholar 

  • Mohammadi Z, Abolhassani M, Dorkoosh FA, Hosseinkhani S, Gilani K, Amini T et al (2011) Preparation and evaluation of chitosan-DNA-FAP-B nanoparticles as a novel non-viral vector for gene delivery to the lung epithelial cells. Int J Pharm 409(1–2):307–313

    CAS  PubMed  Google Scholar 

  • Moura LIF, Dias AMA, Leal EC, Carvalho L, de Sousa HC, Carvalho E (2014) Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater 10(2):843–857

    CAS  PubMed  Google Scholar 

  • Mouser VHM, Abbadessa A, Levato R, Hennink WE, Vermonden T, Gawlitta D et al (2017) Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication 9(1):13

    Google Scholar 

  • Mu QX, Yu J, McConnachie LA, Kraft JC, Gao Y, Gulati GK et al (2018) Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 26(5–6):435–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller-Rath R, Gavenis K, Andereya S, Mumme T, Albrand M, Stoffel M et al (2010) Condensed cellular seeded collagen gel as an improved biomaterial for tissue engineering of articular cartilage. Biomed Mater Eng 20(6):317–328

    CAS  PubMed  Google Scholar 

  • Mulligan RC (1993) The basic science of gene-therapy. Science 260(5110):926–932

    CAS  PubMed  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    CAS  PubMed  Google Scholar 

  • Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM (2007) Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: Effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomed Nanotechnol Biol Med 3(3):173–183

    CAS  Google Scholar 

  • Nascimento AV, Gattacceca F, Singh A, Bousbaa H, Ferreira D, Sarmento B et al (2016) Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine 11(7):767–781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen MH, Tran TT, Hadinoto K (2016) Controlling the burst release of amorphous drug-polysaccharide nanoparticle complex via crosslinking of the polysaccharide chains. Eur J Pharm Biopharm 104:156–163

    CAS  PubMed  Google Scholar 

  • Noh SM, Park MO, Shim G, Han SE, Lee HY, Huh JH et al (2010) Pegylated poly-L-arginine derivatives of chitosan for effective delivery of siRNA. J Control Release 145(2):159–164

    CAS  PubMed  Google Scholar 

  • Ozbolat IT, Peng WJ, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21(8):1257–1271

    CAS  PubMed  Google Scholar 

  • Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW (2015) Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37:230–241

    CAS  PubMed  Google Scholar 

  • Qasim SB, Zafar MS, Najeeb S, Khurshid Z, Shah AH, Husain S et al (2018) Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 19(2):26

    Google Scholar 

  • Qian C, Zhang TB, Gravesande J, Baysah C, Song XY, Xing JF (2019) Injectable and self-healing polysaccharide-based hydrogel for pH-responsive drug release. Int J Biol Macromol 123:140–148

    CAS  PubMed  Google Scholar 

  • Ran LX, Zou YN, Cheng JW, Lu F (2019) Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. Int J Biol Macromol 125:392–403

    CAS  PubMed  Google Scholar 

  • Rasoulianboroujeni M, Fahimipour F, Shah P, Khoshroo K, Tahriri M, Eslami H et al (2019) Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Mater Sci Eng C-Mater Biol Appl 96:105–113

    CAS  PubMed  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578–592

    CAS  PubMed  Google Scholar 

  • Ribeiro MP, Espiga A, Silva D, Baptista P, Henriques J, Ferreira C et al (2009) Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen 17(6):817–824

    PubMed  Google Scholar 

  • Risbud MV, Sittinger M (2002) Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 20(8):351–356

    CAS  PubMed  Google Scholar 

  • Risbud M, Ringe J, Bhonde R, Sittinger M (2001) In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: Implications for engineering cartilage tissue. Cell Transplant 10(8):755–763

    CAS  PubMed  Google Scholar 

  • Rodriguez-Rodriguez R, Garcia-Carvajal ZY, Jimenez-Palomar I, Jimenez-Avalos JA, Espinosa-Andrews H (2019) Development of gelatin/chitosan/PVA hydrogels: thermal stability, water state, viscoelasticity, and cytotoxicity assays. J Appl Polym Sci 136(10):9

    Google Scholar 

  • Rowland CR, Lennon DP, Caplan AI, Guilak F (2013) The effects of crosslinking of scaffolds engineered from cartilage ECM Cross Mark on the chondrogenic differentiation of MSCs. Biomaterials 34(23):5802–5812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudzinski WE, Aminabhavi TM (2010) Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 399(1–2):1–11

    CAS  PubMed  Google Scholar 

  • Rudzinski WE, Palacios A, Ahmed A, Lane MA, Aminabhavi TM (2016) Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr Polym 147:323–332

    CAS  PubMed  Google Scholar 

  • Saengkrit N, Sajomsang W, Pimpa N, Chaleawlert-umpon S, Rakkhithawatthana V, Tencomnao T (2011) Layer-by-layer deposition of cationic polymers on gold nanoparticle for non-viral gene delivery system. Nanotechnology 2011. Bio Sensors, Instr, Med, Enviro Energy, Nsti-Nanotech 3(2011):302–305

    Google Scholar 

  • Sahana TG, Rekha PD (2018) Biopolymers: Applications in wound healing and skin tissue engineering. Mol Biol Rep 45(6):2857–2867

    CAS  PubMed  Google Scholar 

  • Saravanan S, Chawla A, Vairamani M, Sastry TP, Subramanian KS, Selvamurugan N (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 104:1975–1985

    CAS  PubMed  Google Scholar 

  • Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24(12):2198–2206

    CAS  PubMed  Google Scholar 

  • Saxena V, Hasan A, Pandey LM (2018) Effect of Zn/ZnO integration with hydroxyapatite: a review. Mater Technol 33(2):79–92

    CAS  Google Scholar 

  • Scaffaro R, Lopresti F, Maio A, Sutera F, Botta L (2017) Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 15(2):E107–EE21

    CAS  PubMed  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242

    CAS  Google Scholar 

  • Song KD, Li LY, Li WF, Zhu YX, Jiao ZR, Lim M et al (2015) Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Mater Sci Eng C-Mater Biol Appl 55:384–392

    CAS  PubMed  Google Scholar 

  • Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials I. Advances in polymer science, vol 243. Springer-Verlag Berlin, Berlin, pp 23–53

    Google Scholar 

  • Sreeram KJ, Narayan S, Abbineni G, Hayhurst A, Mao CB (2010) Architectonics of phage-liposome nanowebs as optimized photosensitizer vehicles for photodynamic cancer therapy. Mol Cancer Ther 9(9):2524–2535

    PubMed Central  Google Scholar 

  • Strauer BE, Kornowski R (2003) Stem cell therapy in perspective. Circulation 107(7):929–934

    PubMed  Google Scholar 

  • Subbiah R, Guldberg RE (2019) Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Adv Healthc Mater 8(1):24

    Google Scholar 

  • Sun QH, Sun XR, Ma XP, Zhou ZX, Jin EL, Zhang B et al (2014) Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater 26(45):7615–7621

    CAS  PubMed  Google Scholar 

  • Sun P, Huang W, Jin MJ, Wang QM, Fan B, Kang L et al (2016) Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int J Nanomedicine 11:4931–4945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Supp DM, Boyce ST (2005) Engineered skin substitutes: practices and potentials. Clin Dermatol 23(4):403–412

    PubMed  Google Scholar 

  • Swierczewska M, Han HS, Kim K, Park JH, Lee S (2016) Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev 99:70–84

    CAS  PubMed  Google Scholar 

  • Tan Q, Liu XJ, Fu XY, Li QL, Dou JF, Zhai GX (2012) Current development in nanoformulations of docetaxel. Expert Opin Drug Deliv 9(8):975–990

    CAS  PubMed  Google Scholar 

  • Tan ZC, Parisi C, Di Silvio L, Dini D, Forte AE (2017) Cryogenic 3D printing of super soft hydrogels. Sci Rep 7:11

    Google Scholar 

  • Tardajos MG, Cama G, Dash M, Misseeuw L, Gheysens T, Gorzelanny C et al (2018) Chitosan functionalized poly-epsilon-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications. Carbohydr Polym 191:127–135

    CAS  PubMed  Google Scholar 

  • Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ (2009) Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. Eur J Pharm Biopharm 71(2):257–263

    CAS  PubMed  Google Scholar 

  • Toume S, Gefen A, Weihs D (2017) Low-level stretching accelerates cell migration into a gap. Int Wound J 14(4):698–703

    PubMed  Google Scholar 

  • Veilleux D, Panicker RKG, Chevrier A, Biniecki K, Lavertu M, Buschmann MD (2018) Lyophilisation and concentration of chitosan/siRNA polyplexes: Influence of buffer composition, oligonucleotide sequence, and hyaluronic acid coating. J Colloid Interface Sci 512:335–345

    CAS  PubMed  Google Scholar 

  • Verma MS, Liu SY, Chen YY, Meerasa A, Gu FX (2012) Size-tunable nanoparticles composed of dextran-b-poly(D,L-lactide) for drug delivery applications. Nano Res 5(1):49–61

    CAS  Google Scholar 

  • Vukajlovic D, Parker J, Bretcanu O, Novakovic K (2019) Chitosan based polymer/bioglass composites for tissue engineering applications. Mater Sci Eng C-Mater Biol Appl 96:955–967

    CAS  PubMed  Google Scholar 

  • Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part I): products on the market. Int J Nanomedicine 9:4357–4373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen YF, Oh JK (2014) Recent Strategies to develop polysaccharide-based nanomaterials for biomedical applications. Macromol Rapid Commun 35(21):1819–1832

    CAS  PubMed  Google Scholar 

  • Wu T, Li Y, Lee DS (2017) Chitosan-based composite hydrogels for biomedical applications. Macromol Res 25(6):480–488

    CAS  Google Scholar 

  • Xu YM, Zhan CY, Fan LH, Wang L, Zheng H (2007) Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336(2):329–337

    CAS  PubMed  Google Scholar 

  • Yallapu MM, Jaggi M, Chauhan SC (2013) Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des 19(11):1994–2010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan YN, Wang XH, Pan YQ, Liu HX, Cheng J, Xiong Z et al (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26(29):5864–5871

    CAS  PubMed  Google Scholar 

  • Yan SF, Zhang KX, Liu ZW, Zhang X, Gan L, Cao B et al (2013) Fabrication of poly(L-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds for tissue engineering. J Mater Chem B 1(11):1541–1551

    CAS  PubMed  Google Scholar 

  • Yu RM, Shi YZ, Yang DZ, Liu YX, Qu J, Yu ZZ (2017) Graphene oxide/chitosan aerogel microspheres with honeycomb cobweb and radially oriented microchannel structures for broad spectrum and rapid adsorption of water contaminants. ACS Appl Mater Interfaces 9(26):21809–21819

    CAS  PubMed  Google Scholar 

  • Zhang LM, Xia JG, Zhao QH, Liu LW, Zhang ZJ (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544

    CAS  PubMed  Google Scholar 

  • Zhang HP, Luo XG, Lin XY, Lu X, Tang YH (2016) The molecular understanding of interfacial interactions of functionalized graphene and chitosan. Appl Surf Sci 360:715–721

    CAS  Google Scholar 

  • Zhao DY, Yu S, Sun BN, Gao S, Guo SH, Zhao K (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polymers 10(4):17

    Google Scholar 

  • Zhou YS, Yang DZ, Chen XM, Xu Q, Lu FM, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9(1):349–354

    CAS  PubMed  Google Scholar 

  • Zhou YS, Yang HJ, Liu X, Mao J, Gu SJ, Xu WL (2013) Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol 53:88–92

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narayan, S. (2019). Chitosan-Based Nanoformulation as Carriers of Small Molecules for Tissue Regeneration. In: Jana, S., Jana, S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15-0263-7_11

Download citation

Publish with us

Policies and ethics