Skip to main content

Excitonic-Vibronic Coupling in Natural and Artificial Light-Harvesting Systems

  • Conference paper
  • First Online:
Advances in Spectroscopy: Molecules to Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 236))

  • 800 Accesses

Abstract

The origin of long-lasting quantum coherent oscillations is deemed to be present in highly ordered systems of small scale, but the fact of being present in natural photosynthetic light-harvesting complexes (LHC) has puzzled researchers for years now. The initial incident of photons excites the chromophoric pigments inside the protein, the exciton formed is transported efficiently to other pigments to reaction center for charge separation process. The question of whether one can replicate this quantum coherent mechanism in artificial light-harvesting systems remains open. Exciton energy transfer observed in all the natural systems, due to the extended quantum superpositions of energy levels interplay between the excitonic-vibronic coupling can enhance the energy transfer process. Herein I have overviewed the theoretical background with particular excitonic-vibronic energy transfer mechanism that occurs in natural LHC (phycobilins, LH2, and Fenna–Matthews–Olson (FMO) complexes). The total Hamiltonian excitonic-vibronic description followed in major works is explained in detail, and computing individual parameters like chromophore site energies and coupling parameters are presented. Artificial light-harvesting systems of H- and J-aggregates use donor and acceptor concept to understand the absorption and photoluminescence properties. Frenkel exciton theory explains the excitonic energy transfer mechanism using the Coulomb coupling among aggregates and the extended Frenkel-Holstein theory explains the excitonic-vibronic coupling in aggregates. A brief overview of excitonic-vibronic coupling from simple oligoacenes till polymeric materials is given in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bogdanov, J. Farfan, K. Sadovskaia, A. Aghahosseini, M. Child, A. Gulagi, A.S. Oyewo, L. de Souza Noel Simas Barbosa, C. Breyer, Nat. Commun. 10(1), 1077 (2019)

    Google Scholar 

  2. R.E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, Oxford, 2008)

    Google Scholar 

  3. A. Douhal, J. Santamaria, Femtochemistry and Femtobiology: Ultrafast Dynamics in Molecular Science (World Scientific, Singapore, 2002)

    Google Scholar 

  4. V.M. Kenkre, P. Reineker, Exciton Dynamics in Molecular Crystals and Aggregates (Springer, Berlin, 1982)

    Book  Google Scholar 

  5. V. May, O. Kühn, Charge and Energy Transfer in Molecular Systems, 3rd edn. (Wiley-VCH, Berlin, 2011)

    Book  Google Scholar 

  6. G.D. Scholes, T. Mirkovic, D.B. Turner, F. Fassioli, A. Buchleitner, Energy Environ. Sci. 5(11), 9374 (2012)

    Article  Google Scholar 

  7. T. Mirkovic, E.E. Ostroumov, J.M. Anna, R. van Grondelle, Govindjee, G.D. Scholes, Chem. Rev. 117(2), 249 (2017)

    Google Scholar 

  8. H. Lee, Y.C. Cheng, G. Fleming, Science 316, 1462 (2007)

    Article  ADS  Google Scholar 

  9. G.D. Scholes, G.R. Fleming, A. Olaya Castro, R. van Grondelle, Nat. Chem. 3, 763 (2011)

    Google Scholar 

  10. G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mancal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  11. G. Panitchayangkoon, D. Hayes, K.A. Fransted, J.R. Caram, E. Harel, J. Wen, R.E. Blankenship, G.S. Engel, Proc. Natl. Acad. Sci. USA 107, 12766 (2010)

    Article  ADS  Google Scholar 

  12. F.D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S.S. Senlik, D.E. Wilcox, C.F. Yocum, L. Valkunas, D. Abramavicius, J.P. Ogilvie, Nat. Chem. 6, 706 EP (2014)

    Google Scholar 

  13. M. Taniguchi, J.S. Lindsey, Chem. Rev. 117(2), 344 (2017)

    Article  Google Scholar 

  14. T. Kondo, W.J. Chen, G.S. Schlau-Cohen, Chem. Rev. 117(2), 860 (2017)

    Article  Google Scholar 

  15. C. Curutchet, B. Mennucci, Chem. Rev. 117(2), 294 (2017)

    Article  Google Scholar 

  16. T. Renger, F. Müh, Phys. Chem. Chem. Phys. 15, 3348 (2013)

    Article  Google Scholar 

  17. C. Olbrich, J. Strümpfer, K. Schulten, U. Kleinekathöfer, J. Phys. Chem. B 115, 758 (2011)

    Article  Google Scholar 

  18. S. Chandrasekaran, M. Aghtar, S. Valleau, A. Aspuru-Guzik, U. Kleinekathöfer, J. Phys. Chem. B 119(31), 9995 (2015)

    Article  Google Scholar 

  19. T. Renger, A. Klinger, F. Steinecker, M. Schmidt am Busch, J. Numata, F. Müh, J. Phys. Chem. B 116(50), 14565 (2012)

    Google Scholar 

  20. C. Olbrich, T.L.C. Jansen, J. Liebers, M. Aghtar, J. Strümpfer, K. Schulten, J. Knoester, U. Kleinekathöfer, J. Phys. Chem. B 115, 8609 (2011)

    Article  Google Scholar 

  21. S. Valleau, A. Eisfeld, A. Aspuru Guzik, J. Chem. Phys. 137(22), 224103 (2012)

    Google Scholar 

  22. S. Chandrasekaran, K.R. Pothula, U. Kleinekathöfer, J. Phys. Chem. B 121(15), 3228 (2017)

    Article  Google Scholar 

  23. T. Renger, F. Müh, Photosynth. Res. 111(1–2), 47 (2012)

    Article  Google Scholar 

  24. C.C. Jumper, I.H.M. van Stokkum, T. Mirkovic, G.D. Scholes, J. Phys. Chem. B 122(24), 6328 (2018)

    Article  Google Scholar 

  25. M. Wendling, T. Pullerits, M.A. Przyjalgowski, S.I.E. Vulto, T.J. Aartsma, R.V. Grondelle, H.V. Amerongen, J. Phys. Chem. B 104, 5825 (2000)

    Google Scholar 

  26. F. Caycedo-Soler, J. Lim, S. Oviedo-Casado, N.F. van Hulst, S.F. Huelga, M.B. Plenio, J. Phys. Chem. Lett. 9(12), 3446 (2018)

    Article  Google Scholar 

  27. C. Olbrich, U. Kleinekathöfer, J. Phys. Chem. B 114, 12427 (2010)

    Article  Google Scholar 

  28. N.R.S. Reddy, P.A. Lyle, G.J. Small, Photosynth. Res. 31(3), 167 (1992)

    Article  Google Scholar 

  29. N. Reddy, G. Small, M. Seibert, R. Picorel, Chem. Phys. Lett. 181(5), 391 (1991)

    Article  ADS  Google Scholar 

  30. M. Maiuri, E.E. Ostroumov, R.G. Saer, R.E. Blankenship, G.D. Scholes, Nat. Chem. 10, 177 EP (2018)

    Google Scholar 

  31. D.E. Tronrud, J. Wen, L. Gay, R.E. Blankenship, Photosynth. Res. 100, 79 (2009)

    Article  Google Scholar 

  32. J. Huh, S.K. Saikin, J.C. Brookes, S. Valleau, T. Fujita, A. Aspuru-Guzik, J. Am. Chem. Soc. 136(5), 2048 (2014)

    Article  Google Scholar 

  33. D. Padula, M.H. Lee, K. Claridge, A. Troisi, J. Phys. Chem. B 121(43), 10026 (2017)

    Article  Google Scholar 

  34. N. Christensson, H.F. Kauffmann, T. Pullerits, T. Mančal, J. Phys. Chem. B 116(25), 7449 (2012)

    Article  Google Scholar 

  35. A. Chenu, N. Christensson, H.F. Kauffmann, T. Mančal, Sci. Rep. 3, 2029 (2013)

    Article  ADS  Google Scholar 

  36. M. Aghtar, J. Strümpfer, C. Olbrich, K. Schulten, U. Kleinekathöfer, J. Phys. Chem. Lett. 5, 3131 (2014)

    Article  Google Scholar 

  37. V. Balzani, G. Bergamini, P. Ceroni, E. Marchi, New J. Chem. 35, 1944 (2011)

    Article  Google Scholar 

  38. M.R. Wasielewski, Acc. Chem. Res. 42(12), 1910 (2009)

    Article  Google Scholar 

  39. N. Hildebrandt, C.M. Spillmann, W.R. Algar, T. Pons, M.H. Stewart, E. Oh, K. Susumu, S.A. Díaz, J.B. Delehanty, I.L. Medintz, Chem. Rev. 117(2), 536 (2017)

    Article  Google Scholar 

  40. V. Giannini, A.I. Fernández-Domínguez, S.C. Heck, S.A. Maier, Chem. Rev. 111(6), 3888 (2011)

    Article  Google Scholar 

  41. N.J. Hestand, F.C. Spano, Acc. Chem. Res. 50(2), 341 (2017)

    Article  Google Scholar 

  42. R.L. Fulton, M. Gouterman, J. Chem. Phys. 35(3), 1059 (1961)

    Article  ADS  Google Scholar 

  43. N.J. Hestand, F.C. Spano, Chem. Rev. 118(15), 7069 (2018)

    Article  Google Scholar 

  44. H. Tamura, I. Burghardt, J. Am. Chem. Soc. 135(44), 16364 (2013)

    Article  Google Scholar 

  45. D. Abramavicius, B. Palmieri, D.V. Voronine, F. Sanda, S. Mukamel, Chem. Rev. 109, 2350 (2009)

    Article  Google Scholar 

  46. J.L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104(11), 4971 (2004)

    Article  Google Scholar 

  47. R.S. Sánchez-Carrera, V. Coropceanu, D.A. da Silva Filho, R. Friedlein, W. Osikowicz, R. Murdey, C. Suess, W.R. Salaneck, J.L. Brédas, J. Phys. Chem. B 110(38), 18904 (2006)

    Google Scholar 

  48. A. Sarbu, L. Biniek, J.M. Guenet, P.J. Mésini, M. Brinkmann, J. Mater. Chem. C 3, 1235 (2015)

    Article  Google Scholar 

  49. R.D. Pensack, J.B. Asbury, J. Am. Chem. Soc. 131(44), 15986 (2009)

    Article  Google Scholar 

  50. H. Tamura, J.G.S. Ramon, E.R. Bittner, I. Burghardt, J. Phys. Chem. B 112(2), 495 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suryanarayanan Chandrasekaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandrasekaran, S. (2019). Excitonic-Vibronic Coupling in Natural and Artificial Light-Harvesting Systems. In: Singh, D., Das, S., Materny, A. (eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-15-0202-6_9

Download citation

Publish with us

Policies and ethics