Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

  • 334 Accesses

Abstract

In this chapter, a general description of the mathematical model of heat transfer and field emission is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The photoconductivity is the effect of an increase in the electric conductivity of a semiconductor under the action of electromagnetic radiation.

References

  1. Becquerel, A.E.: Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Comptes Rendus 9, 561–567 (1839)

    Google Scholar 

  2. Bonch-Bruevich, V.L., Kalashnikov, S.G.: Semiconductor Physics. Nauka, Moscow (1990). (in Russian)

    Google Scholar 

  3. Bugaev, S.P., Litvinov, E.A., Mesyats, G.A., Proskurovskii, D.I.: Explosive emission of electrons. Sov. Phys. Uspekhi 18, 51–61 (1975)

    Article  ADS  Google Scholar 

  4. Cathey, D.A.: Field-emission displays. Inf. Disp. 16 (1995)

    Google Scholar 

  5. Christov, S.G.: General theory of electron emission from metals. Phys. Status Ssolidi (B) 17(1), 11–26 (1966)

    Article  ADS  Google Scholar 

  6. Danilov, V.G.: On the relation between the Maslov-Whitham method and the weak asymptotics method. In: Kamiński, A., Oberguggenberger, M., Pilipović, S. (eds.) Linear and Non-Linear Theory of Generalized Functions and its Applications, vol. 88, pp. 55–65. Banach Center Publications, Warsaw (2010)

    Chapter  Google Scholar 

  7. Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Asymptotic behavior of the solution of a phase field system, and a modified stefan problem. Differ. Equ. 31(3), 446–454 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Danilov, V.G., Omel’yanov, G.A., Radkevich, E.V.: Hugoniot-type conditions and weak solutions to the phase-field system. Eur. J. Appl. Math. 10, 55–77 (1999)

    Article  MathSciNet  Google Scholar 

  9. Danilov, V.G., Omel’yanov, G.A., Shelkovich, V.M.: Weak asymptotics method and interaction of nonlinear waves. Am. Math. Soc. Transl.: 2 208, 33–163. Providence: American Mathematical Society (2003)

    Google Scholar 

  10. Dyzhev, N.A., Gudkova, S.A., Makhiboroda, M.A., Fedirko V, A.: Investigation of emussion properties of silicon cathodes of different geometry. In: Bykov, D.V. (Ed.) Vacuum science and Technics, Material of XII Scientific-Technical Conference with Participation of Foreign Specialists, pp. 221–224. MIEM, Moscow (2005). (in Russian)

    Google Scholar 

  11. Egorov, N., Sheshin, E.: Field Emission Electronics. Springer (2017)

    Google Scholar 

  12. Elster, G.: On the electricity of flames. Annalen of Physik und Chemie 3(16), 193–222 (1882)

    Article  ADS  Google Scholar 

  13. Elster, G.: On the generation of electricity by the contact of gases and incandescent bodies. Annalen of Physik und Chemie 3(19), 588–624 (1883)

    Article  ADS  Google Scholar 

  14. Elster, G.: On the unipolar conductivity of heated gases. Annalen of Physik und Chemie 3(26), 1–9 (1885)

    Article  ADS  Google Scholar 

  15. Elster, G.: On the electrification of gases by incandescent bodies. Annalen of Physik und Chemie 3(31), 109–127 (1887)

    Article  ADS  Google Scholar 

  16. Elster, G.: On the generation of electricity by contact of rarefied gas with electrically heated wires. Annalen of Physik und Chemie 3(37), 315–329 (1889)

    Article  ADS  Google Scholar 

  17. Flügge, S. (ed.): Electron-Emission and Gas Discharges I, Encyclopedia of Physics, vol. XXI. Springer, Berlin (1956)

    Google Scholar 

  18. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. Royal Soc. Lond. Ser. A 119(781), 173–181 (1928)

    Article  ADS  Google Scholar 

  19. Furcey, G.: Field Emission in Vacuum Microelectronics. Springer (2005)

    Google Scholar 

  20. Goldstein, E.: On electric conduction in vacuum. Annalen der Physik und Chemie 3(24), 79–92 (1885)

    Article  ADS  Google Scholar 

  21. Grundmann, M.: The Physics of Semiconductors: An Introduction Including Nanophysics and Applications. Springer (2016)

    Google Scholar 

  22. Guthrie, F.: On a relation between heat and static electricity. Philos. Mag. 46(306), 257–266 (1873)

    Article  Google Scholar 

  23. Hertz, H.: Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Annalen der Physik 267(8), 983–1000 (1887)

    Article  ADS  Google Scholar 

  24. Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie 2:136, 1–31, 197–234 (1869)

    Google Scholar 

  25. Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie Jubalband 430–445 (1874)

    Google Scholar 

  26. Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie 3(7), 553–631 (1879)

    Article  ADS  Google Scholar 

  27. Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie 3(20), 705–775 (1883)

    Article  ADS  Google Scholar 

  28. Hittorf, W.: On electrical conduction of gases. Annalen of Physik und Chemie 3(21), 90–139 (1884)

    Article  ADS  Google Scholar 

  29. Hofmann, P.: Solid State Physics: An Introduction. Wiley (2015)

    Google Scholar 

  30. Lee, T.H.: T-f theory of electron emission in high-current arcs. J. Appl. Phys. 30(2), 166–171 (1959)

    Article  ADS  Google Scholar 

  31. Mironov, V.L.: Fundamentals of Scanning Probe Microscopy. Institute for Physics of Microstructures RAS, Nizhniy Novgorod (2004)

    Google Scholar 

  32. Murphy, E.L., Good, R.H.: Thermionic emission, field emission, and the transition region. Phys. Rev. 102(6), 1464–1473 (1956)

    Article  ADS  Google Scholar 

  33. Nottingham, W.B.: Remarks on energy losses attending thermionic emission of electrons from metals. Phys. Rev. (1941)

    Google Scholar 

  34. Paulini, J., Klein, T., Simon, G.: Thermo-field emission and the Nottingham effect. J. Phys. D: Appl. Phys. 26(8), 1310–1315 (1993)

    Article  ADS  Google Scholar 

  35. Richardson, O.: Thermionic phenomena and the laws which govern them. In: Nobel Lecture, pp. 224–236. Stockholm (1929)

    Google Scholar 

  36. Schottky, W.: Über kalte und warme elektronenentladungen. Zeitschrift für Physik 14(1), 63–106 (1923)

    Article  ADS  Google Scholar 

  37. Shalimova, K.V.: Physics of Semiconductors. Energoatomizdat, Moscow (1985). (in Russian)

    Google Scholar 

  38. Smith, R.T.: Electronics developments for field-emission displays. Inf. Display 14(2), 12 (1998)

    MathSciNet  Google Scholar 

  39. Smith, W.: Effect of light on selenium during the passage of an electric current. Nature 7(173), 303 (1873)

    Article  Google Scholar 

  40. Stilbans, L.S.: Physics Semiconductors. Soviet Radio, Moscow (1967). (in Russian)

    Google Scholar 

  41. Stoletow, A.: Suite des recherches actino-electriques. Comptes Rendus CVII 91 (1888)

    Google Scholar 

  42. Stoletow, A.: Sur les courants actino-electriqies au travers detair. Comptes Rendus CVI 1593 (1888)

    Google Scholar 

  43. Stoletow, A.: Sur une sorte de courants electriques provoques par les rayons ultraviolets. Comptes Rendus CVI 1149 (1888)

    Google Scholar 

  44. Stratton, R.: Theory of field emission from semiconductors. Phys. Rev. 125(1), 67–82 (1962)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Danilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danilov, V., Gaydukov, R., Kretov, V. (2020). Introduction. In: Mathematical Modeling of Emission in Small-Size Cathode. Heat and Mass Transfer. Springer, Singapore. https://doi.org/10.1007/978-981-15-0195-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0195-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0194-4

  • Online ISBN: 978-981-15-0195-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics