Skip to main content

Stacked Convolutional Autoencoder for Detecting Animal Images in Cluttered Scenes with a Novel Feature Extraction Framework

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1057))

Abstract

Detection of animals from a cluttered scene is not a trivial task. So far, convolutional neural network (CNN) architectures have served this purpose. We introduce stacked convolutional autoencoders (SCAE) for this purpose. It is an unsupervised stratified feature extractor that could be used for high-dimensional input images. We also introduce a hybrid feature extraction technique based on Fisher Vectors (FV) and stacked autoencoders (SAE). SCAE learns significant features utilizing plain stochastic gradient descent and finds a good initialization for CNNs so as to eliminate the various unique local minima of exceptionally non-convex target functions emerging in virtually all deep learning problems. We have proposed a parallel pipeline for both detecting animals in both visible and infrared images. The framework model has achieved 97% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dewan, A.M., Islam, M.M., Kumamoto, T., et al.: Water Resource Manag. 21, 1601 (2007). https://doi.org/10.1007/s11269-006-9116-1

    Article  Google Scholar 

  2. Dabarera, R., Rodrigo, R.: Vision based elephant recognition for management and conservation. In: Proceedings of the 2010 5th International Conference on Information and Automation for Sustainability, ICIAfS 2010 (2010). https://doi.org/10.1109/ICIAFS.2010.5715653

  3. Goswami, A.V., et al.: Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson’s disease. Hum. Mol. Genet. 21(15), 3317–3332 (2012)

    Article  Google Scholar 

  4. Vinod A.D., Kantilal. P.R.: Identification of Animal using IRIS Recognition. Int. J. Adv. Technol. Eng. Sci. 3(1) (2015)

    Google Scholar 

  5. Ardovini, R.: Ardovini R., 2008 Bela africana sp.n. dal West Africa, Senegal. Malacologia Mostra Mondiale XX, 12–13 (2008)

    Google Scholar 

  6. Chen, G., Han, T.X., He, Z., Kays, R., Forrester, T.: Deep convolutional neural network based species recognition for wild animal monitoring. In: IEEE International Conference on Image Processing (ICIP), pp. 858–862 (2014). https://doi.org/10.1109/icip.2014.7025172

  7. Figueroa, K., Camarena-Ibarrola, A., García, J., Villela, H.T.: Fast automatic detection of wildlife in images from trap cameras. In: Iberoamerican Congress on Pattern Recognition, pp. 940–947. Springer (2014). https://doi.org/10.1007/978-3-319-12568-8_114

    Chapter  Google Scholar 

  8. Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C., Clune, J.: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning, pp. 1–17. Available from: https://www.semanticscholar.org/paper/Automatically-identifying%2C-counting%2C-and-describing-Norouzzadeh-Nguyen/2bff54fb3f6aacb0b89323da8db49491c5e1e4a5

  9. Gomez, A., Salazar, A., Vargas, F.: Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks. Ecol. Inform. 41, 24–32 (2017). https://doi.org/10.1016/j.ecoinf.2017.07.004

    Article  Google Scholar 

  10. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol. 6791. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  11. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Cruz-Roa, A.A., Arevalo Ovalle, J.E., Madabhushi, A., González Osorio, F.A.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol. 8150. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Lapuschkin, S., Binder, A., Montavon, G., Müller, K.-R., Samek, W.: Analyzing Classifiers: Fisher Vectors and Deep Neural Networks, pp. 2912–2920 (2016). https://doi.org/10.1109/cvpr.2016.318

  14. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep Clustering with Convolutional Autoencoders. ICONIP (2017)

    Google Scholar 

  15. Wang, P., Liu, L., Shen, C., Huang, Z., van den Hengel, A., Tao Shen, H.: Multi-attention network for one shot learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6212–6220 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Divya Meena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meena, S.D., Agilandeeswari, L. (2020). Stacked Convolutional Autoencoder for Detecting Animal Images in Cluttered Scenes with a Novel Feature Extraction Framework. In: Das, K., Bansal, J., Deep, K., Nagar, A., Pathipooranam, P., Naidu, R. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 1057. Springer, Singapore. https://doi.org/10.1007/978-981-15-0184-5_44

Download citation

Publish with us

Policies and ethics