Skip to main content

Low-Frequency Electromagnetic Fields and Finite Element Method

  • Chapter
  • First Online:
  • 768 Accesses

Abstract

Electromagnetic field analysis is the basis for solving the engineering coupled electromagnetic and thermal field problems. Based on the low-frequency Maxwell’s equations, some key problems concerning the formulations and numerical implementations of typical 3-D eddy current analysis methods, using different potential sets, such as A-V-A (or employing a reduced vector magnetic potential Ar to convert to Ar-V-Ar) and T-Ψ-Ψ, are briefly explained. Furthermore, the numerical solvers based on different potential sets have been developed by the author’s group and verified in the Testing Electromagnetic Analysis Methods (TEAM) benchmarking practices. In this chapter, the Galerkin weighted residual method, a key technique in numerical implementation, is elaborated, and the effectiveness of edge element, for example, in effectively reducing computational cost in industrial applications is discussed. Strengthening the theoretical basis of finite element analysis of electromagnetic fields and correctly understanding the significance of the combination of advanced numerical computation with accurate material property modeling will be more helpful in improving the effectiveness of modeling and simulation and further promoting the use of simulation in industrial applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. C. Maxwell, “A treatise on electricity and magnetism,” Vols. I and II, Clarendon Press, England, 1904.

    Google Scholar 

  2. J. A. Stratton. Electromagnetic Theory. McGraw-Hill Book Company, Inc., New York & London, 1941.

    Google Scholar 

  3. R. W. Clough, “The finite element method in plane stress analysis,” Proc. of 2nd ASCE Conf. Electronic Computation, Pittsburgh, PA., pp. 345–378, 1960.

    Google Scholar 

  4. Fraeijs B.X.de Veubeke, “Displacement and equilibrium models in the finite element method, Stress Analysis (ed. by O. C. Zienkiewicz & G. Holister), New York: Wiley. 1965.

    Google Scholar 

  5. O. C. Zienkiewicz. The finite element method. Fourth edition. McGraw-Hill. 1994.

    Google Scholar 

  6. A. M. Winslow, “Numerical solution of the quasi-linear Poisson equation in a non-uniform triangle mesh,” Journal of Computational Physics, vol. 2, 1967, pp. 149–172.

    Article  MathSciNet  Google Scholar 

  7. P. P. Silvester, “Finite element solution of homogeneous waveguide problems,” Alta Frequenza, 38, 1969, pp. 313–317.

    Google Scholar 

  8. J. C. Nedelec, “Mixed finite elements in R3”, Numerische Mathematik, vol. 35, pp. 315–341, 1980.

    Article  MathSciNet  Google Scholar 

  9. C. J. Carpenter, “Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies,” Proc.IEE, Vol. 124, No. 11 Nov., 1977, pp. 1026–1034.

    Article  Google Scholar 

  10. C. W. Trowbridge, “Electromagnetic computing: the way ahead!” IEEE Trans. on Magn., vol. 24, 1988, pp. 3159–3161.

    Article  Google Scholar 

  11. A. Bossavit. Computational electromagnetism (Variational formulations, complementarity, edge elements). Academic Press. 1998.

    Google Scholar 

  12. C. Feng (editor), Electromagnetic Field (2nd Edition, in Chinese). Higher Education Press, 1983.

    Google Scholar 

  13. J. Sheng, et al., Numerical Analysis for Electromagnetic Fields (in Chinese). Science Press, 1984.

    Google Scholar 

  14. X. Wang, Theory and Application of Electromagnetic Fields (in Chinese). Science Press, 1986.

    Google Scholar 

  15. K. Zhou, On Engineering Electromagnetic Field (in Chinese). Huazhong Engineering College Press, 1986.

    Google Scholar 

  16. Y. Tang. Electromagnetic Field in Motor (in Chinese). Science Press, 1982.

    Google Scholar 

  17. N. Takahashi, Three Dimensional Finite Element Methods. IEEJ, Japan, 2006.

    Google Scholar 

  18. P. Chen, L. Yan, and R. Yao, Theory and Calculation of Motor Electromagnetic Field (in Chinese). Science Press, 1986.

    Google Scholar 

  19. X. Ma, J. Zhang, and P. Wang, Fundamentals of Electromagnetic Fields (in Chinese). Tsinghua University Press, 1995.

    Google Scholar 

  20. M. Fan, and W. Yan, Electromagnetic Field Integral Equation (in Chinese). China Machine Press, 1988.

    Google Scholar 

  21. G. Ni (editor), Principle of Engineering Electromagnetic Field(in Chinese). Higher Education Press, 2002.

    Google Scholar 

  22. W. Yan, Q. Yang, and Y. Wang, Numerical Analysis of Electromagnetic Fields in Electrical Engineering (in Chinese). China Machine Press, Aug. 2005.

    Google Scholar 

  23. D. Xie, et al., Finite Element Analysis of 3D Eddy Current Field. China Machine Press (2nd Edition, in Chinese), Mar. 2008.

    Google Scholar 

  24. O. Biro and K. Preis, “Finite element analysis of 3-D eddy currents,” IEEE Trans. on Magn., vol. 26, 1990, pp. 418–423.

    Article  Google Scholar 

  25. O. Biro, K. Preis, W. Renhart, K. R. Richter, and G. Vrisk, “Performance of different vector potential formulations in solving multiply connected 3-D eddy current problems,” IEEE Trans. on Magn., vol. 26, 1990, pp. 438–411.

    Article  Google Scholar 

  26. N. Ida and J. P. A. Bastos. Electromagnetics and calculation of fields (second edition). Springer, 1997.

    Google Scholar 

  27. O. Biro, “Edge element in eddy current computations,” Lecture of seminar on advanced computational electromagnetics, May 26, 1999.

    Google Scholar 

  28. G. Mur, Edge elements, their advantages and their disadvantages, IEEE Trans. on Magn., vol. 30, No. 5, 1994, pp. 3552–3557.

    Article  Google Scholar 

  29. A. Kameari, “Three dimensional eddy current calculation using edge elements for magnetic vector potential,” Applied electromagnetics in materials, 225(1989), Pergamon Press.

    Google Scholar 

  30. K. Fujiwara, “3D magnetic field computation using edge elements,” Proc. of the 5th IGTE symposium on numerical field computation in electrical engineering, Graz, Austria, September 18–22, 1992, pp. 185–212.

    Google Scholar 

  31. A. Ahagon and K. Fujiwara, “Some important properties of edge shape functions,” IEEE Trans. on Magn., vol. 34, no. 5, Sep.1998, pp. 3311–3314.

    Article  Google Scholar 

  32. M. Gyimesi and D. Ostergaard, “Non-conforming hexahedral edge elements for magnetic analysis,” IEEE Trans. on Magn., vol. 34, no. 5, 1998, pp. 2481–2484.

    Article  Google Scholar 

  33. J. S. van Welij, “Calculation of eddy currents in terms of H on hexahedra,” IEEE Trans. on Magn., vol. 21, no. 6, 1985, pp. 2239–2241.

    Google Scholar 

  34. A. Kameari, “Calculation of transient 3D eddy current using edge elements,” IEEE Trans. on Magn., vol. 26, no. 2, 1990, pp. 466–469.

    Article  Google Scholar 

  35. Z. J. Cendes, “Vector finite elements for electromagnetic field computation,” IEEE Trans. on Magn., vol. 27, 1990, pp. 3958–3966.

    Article  Google Scholar 

  36. A. Bossavit, “Solving Maxwell equations in a closed cavity and the question of ‘spurious modes’,” IEEE Trans. on Magn., vol. 26, 1990, pp. 702–705.

    Article  Google Scholar 

  37. Z. Ren, C. Li and A. Razek, “Hybrid FEM-BIM formulation using electric and magnetic variables,” IEEE Trans. on Magn., vol. 28,1992, pp. 1647–1650.

    Article  Google Scholar 

  38. A. Kameari and K. Koganezawa, “Convergence of ICCG method in FEM using edge elements without gauge condition,” IEEE Trans. on Magn., vol. 33, No. 2, March 1997, pp. 1223–1226.

    Article  Google Scholar 

  39. G. Mur, “The finite element modeling of three-dimensional electromagnetic fields using edge and nodal elements,” IEEE Trans. on Antennas & Propagation, vol. 41, No. 7, 1993, pp. 948–953.

    Article  Google Scholar 

  40. K. Sakiyama, H. Kotera, and A. Ahagon, “3D electromagnetic field mode analysis using finite element method by edge element,” IEEE Trans. on Magn., vol. 26, no. 2, pp. 1759–1761, 1990.

    Article  Google Scholar 

  41. M. L. Barton and Z. Cendes, “New vector finite elements for three-dimensional magnetic field computation,” Journal of Applied Physics, vol. 61, No. 8, 1987, P. 3919–3921.

    Article  Google Scholar 

  42. J. Wang and N. Ida, “Curvilinear and higher order ‘edge’ finite elements in electromagnetic field computation,” IEEE Trans. on Magn., vol. 29, No. 2, 1993, pp. 1491–1494.

    Article  Google Scholar 

  43. K. Fujiwara, T. Nakata, and H. Ohashi, “Improvement of convergence characteristics of ICCG method for A-ϕ method using edge elements,” IEEE Trans. on Magn., vol. 32, no. 5, 1996, pp. 804–807.

    Google Scholar 

  44. O. Biro, K. Preis and K. R. Richter, “On the use of magnetic vector potential in nodal and edge finite element analysis of 3D magnetostatic problem,” IEEE Trans. on Magn., vol. 32, no. 5, 1996, pp. 651–654.

    Google Scholar 

  45. J. B. Manges and Z. J. Cendes, “A generalized tree-cotree gauge for magnetic field computation,” IEEE Trans on Magn., Vol. 31, no. 3, 1995, pp. 1342–1347.

    Article  Google Scholar 

  46. J. P. Webb, “Edge elements and what they can do for you?” IEEE Trans. on Magn., vol. 29, No. 2, 1993, pp. 1460–1465.

    Article  Google Scholar 

  47. C. Bedrosian, M. V. K. Chari, and J. Joseph, “Comparison of full and reduced potential formulations for low-frequency applications,” IEEE Trans. on Magn., vol. 29, no. 2, 1995, pp. 1321–1324.

    Article  Google Scholar 

  48. P. Dular, “Local and global constraints in finite element modeling and the benefits of nodal and edge elements coupling,” ICS Newsletter, Vol. 7, no. 2, 2000, pp. 4–7.

    Google Scholar 

  49. T. Nakata, N. Takahashi, K. Fujiwara, and T. Imai, “Investigation of effectiveness of edge elements,” IEEE Trans. on Magn., vol. 28, no. 2, 1992, pp. 1619–1622.

    Google Scholar 

  50. T. Nakata, N. Takahashi, K. Fujiwara, and P. Olszewski, “Verification of software for 3-D eddy current analysis using IEEJ model,” Advances in electrical engineering software, 349(1990), Springer-Verlag.

    Google Scholar 

  51. H. Yu, K. Shao, L. Li, and C. Gu, “Edge-nodal coupled method for computing 3D eddy current problems,” IEEE Trans. on Magn., vol. 33, no. 2,1997, pp. 1378–1381.

    Article  Google Scholar 

  52. J. Lu, L. Li, and K. Shao, Calculation of Three-dimensional Transient Eddy Current by Using Finite Edge Element, Proceedings of the CSEE, vol. 13, no. 5, 1993:34–41.

    Google Scholar 

  53. J. Lu, K. Shao, L. Li, and K. Zhou, “A new method to solve 3D eddy current using edge element in terms of A in the whole region, Proc. of ICEF, 1992, “Electromagnetic Field Problems and Application,” (ed. by Jian Baiton), pp. 294–297.

    Google Scholar 

  54. Z. Cheng, S. Gao, and L. Li, “Eddy Current Loss Analysis and Validation in Electrical Engineering,” (supported by National Natural Science Foundation of China), ISBN 7-04-009888-1, Higher Education Press, 2001.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of China (no. 59277296 and no. 59924035). In particular, the author appreciates the support of the leaders concerned and thanks all the colleagues for joint development of 3-D eddy current field solvers for years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Cheng .

Editor information

Editors and Affiliations

Appendices

Appendix: Formulation of A-V-A and Galerkin Weighted Residual Processing

The Galerkin’s weighted residual processing is demonstrated based on the potential set of A-V-A using nodal element. Although the model shown in Fig. 2.3 looks simple, but it does not lose generality. For the more general case, there is no substantial difference or difficulty in the derivation process here. This is helpful for knowing basic derivation process.

Fig. 2.3
figure 3

A-V-A model

Basic Model of A-V-A

In the A-V-A model, A (magnetic vector potential) and V (electric scalar potential) are used in the conductor—eddy current region, and only the magnetic vector potential A is used outside the conducting region.

Where σ and μ are the conductivity and permeability of the conducting material, respectively, and the magnetic anisotropy and nonlinearity needed to be considered. In the non-conducting region, the conductivity σ is zero, and the relative permeability μr is equal to 1.

The symbols in Fig. 2.3 are given the following meanings:

ω :

non-eddy current region, Ω: eddy current region

S :

interface between eddy current region and non-eddy current region

\( \varvec{n} \) :

exterior normal unit vector of conductor surface in eddy current region

\( \varvec{n}^{{\prime }} \) :

internal normal unit vector of conductor surface in eddy current region, where

$$ \varvec{n}^{{\prime }} = - \varvec{n} $$
(2.27)

Γ: The outer boundary of the whole solution domain, including generally the following two types:

$$ \Gamma _{h} {:}\,\varvec{H} \times \varvec{n} = 0 $$
(2.28)
$$ \Gamma _{b}{:}\, \varvec{B} \cdot \varvec{n} = 0 $$
(2.29)
A :

magnetic vector potential (Wb/m)

V :

integral quantity of electric scalar potential V′ to time (Vs)

$$ V = \int V^{{\prime }} {\text{d}}t $$
(2.30)
μ :

permeability of conductor (H/m)

σ :

Conductor conductivity (S/m), where the material is set to electric linear and σ is constant

Considering that the permeability of the material in the eddy current region of conductor is treated as anisotropic in any direction, its general tensor form is

$$ \bar{\mu } = \left[ {\begin{array}{*{20}c} {\mu_{xx} } & {\mu_{xy} } & {\mu_{xz} } \\ {\mu_{yx} } & {\mu_{yy} } & {\mu_{yz} } \\ {\mu_{zx} } & {\mu_{zy} } & {\mu_{zz} } \\ \end{array} } \right] $$
(2.31)

The reluctivity of the material should, therefore, be expressed as follows:

$$ \bar{v} = \left[ {\bar{\mu }} \right]^{ - 1} $$

It should be pointed out that only for the sake of simplicity of deduction, the anisotropic permeability in the following formula is simply written as μ, and the anisotropic reluctivity is simply written as \( \frac{1}{\mu } \).

Definition: \( \varvec{B} = \nabla \times {\varvec{A}} \).

Governing Equation of A-V-A

The governing equations of A-V-A are as follows:

3.1 Eddy Current Region

$$ \nabla \times \frac{1}{\mu }\nabla \times \varvec{A} - \text{[}\nabla \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A}\text{]} + \sigma \left( {\frac{{\partial \varvec{A}}}{\partial t} + \nabla \frac{\partial V}{\partial t}} \right) = 0 $$
(2.32)

In square brackets of Eq. (2.32) is a penalty function term to enforce the zero divergence condition, the same below, where μc needs to be isotropic to ensure the symmetry of the coefficient matrix. μc can be determined by the permeability of neighboring elements and updated during iteration.

$$ \nabla \cdot \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \frac{\partial V}{\partial t}} \right) = 0 $$
(2.33)

3.2 Non-Eddy Current Region

$$ \nabla \times \frac{1}{{\mu_{0} }}\nabla \times \varvec{A} - \nabla \frac{1}{{\mu_{0} }}\nabla \cdot \varvec{A} = 0 $$
(2.34)

where μ0: permeability in air.

Galerkin Weighted Residual Processing

4.1 Galerkin Residuals

The Galerkin weighted residual technique is applied to (2.32)–(2.34), and the continuity condition of the boundary field quantity (B, H) is considered.

$$ \left( {\varvec{B}_{1} - \varvec{B}_{2} } \right) \cdot \varvec{n} = 0 $$
(2.35)
$$ \left( {\varvec{H}_{1} - \varvec{H}_{2} } \right) \times \varvec{n} = 0 $$
(2.36)

The discretization equation is derived. The subscripts 1 and 2 indicate both sides of the interface.

The Galerkin residuals corresponding to (2.32) and (2.33), using scalar weight function, are, respectively, as follows:

$$ \varvec{R}_{\mathbf{1}} = \mathop \int \limits_{\Omega } N_{i} \left( {\nabla \times \frac{1}{\mu }\nabla \times \varvec{A} - \nabla \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A} + \sigma \left( {\frac{{\partial \varvec{A}}}{\partial t} + \nabla \frac{\partial V}{\partial t}} \right)} \right)\varvec{ }{\text{d}}v $$
(2.37)
$$ R_{0} = \mathop \int \limits_{{\varvec{\Omega}}} N_{i} \nabla \cdot \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \frac{\partial V}{\partial t}} \right)\varvec{ }{\text{d}}v $$
(2.38)

where Ni is a scalar weight function. For ease of derivation, R1 is rewritten separately as three terms

$$ R_{11} = \mathop \int \limits_{\Omega } N_{i} \nabla \times \frac{1}{\mu }\nabla \times \varvec{A }\,{\text{d}}v $$
(2.39)
$$ R_{12} = - \mathop \int \limits_{\Omega } N_{i} \nabla \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A }\,{\text{d}}v $$
(2.40)
$$ R_{13} = \mathop \int \limits_{\Omega } N_{i} \sigma \left( {\frac{{\partial \varvec{A}}}{\partial t} + \nabla \frac{\partial V}{\partial t}} \right)\varvec{ }{\text{d}}v $$
(2.41)

4.2 Residuals Processing

4.2.1 Eddy Current Region

For (2.39), the vector formulation is

$$ \nabla \times \left( {N_{i} \frac{1}{\mu }\nabla \times \varvec{A}} \right) = \nabla N_{i} \times \frac{1}{\mu }\nabla \times \varvec{A} + N_{i} \nabla \times \frac{1}{\mu }\nabla \times \varvec{A } $$
(2.42)

(2.42) is sorted out to:

$$ N_{i} \nabla \times \frac{1}{\mu }\nabla \times \varvec{A} = \nabla \times \left( {N_{i} \frac{1}{\mu }\nabla \times \varvec{A}} \right) - \nabla N_{i} \times \frac{1}{\mu }\nabla \times \varvec{A } $$
(2.43)

Substituting (2.43) into (2.39)

$$ R_{11} = \mathop \int \limits_{{\Omega } } \nabla \times \left( {N_{i} \frac{1}{\mu }\nabla \times \varvec{A}} \right)\varvec{ }{\text{d}}v - \mathop \int \limits_{{\Omega } } \nabla N_{i} \times \frac{1}{\mu }\nabla \times \varvec{A}\,\varvec{ }{\text{d}}v $$
(2.44)

The vector formulation is

$$ \mathop \int \limits_{{\Omega } } \nabla \times \varvec{a} \,{\text{d}}v = \mathop {\oint }\limits_{s} \varvec{n} \times \varvec{a }\,{\text{d}}s $$

(2.44) can be rewritten as follows:

$$ R_{11} = - \mathop {\oint }\limits_{s} N_{i} \varvec{n} \times \frac{1}{\mu }\nabla \times \varvec{A }\,{\text{d}}s - \mathop \int \limits_{{\Omega } } \nabla N_{i} \times \frac{1}{\mu }\nabla \times \varvec{A }\,{\text{d}}v $$
(2.45)

Apparently, \( \varvec{n} \times \frac{1}{\mu }\nabla \times \varvec{A} = \varvec{n} \times \varvec{H} \) is the tangential component of the magnetic field intensity at the interface. According to the continuity condition of the tangential component of the magnetic field intensity at the interface, the surface integral in (2.45) will be canceled from each other with the corresponding surface integral in the non-eddy current region ω derived from (2.34), and then (2.45) contains only the volume integral term, i.e.,

$$ R_{11} = - \mathop \int \limits_{{\Omega } } \nabla N_{i} \times \frac{1}{\mu }\nabla \times \varvec{A}\,\varvec{ }{\text{d}}v $$
(2.46)

The vector formulation is

$$ \nabla N_{i} = \frac{{\partial N_{i} }}{\partial x}\varvec{ i} + \frac{{\partial N_{i} }}{\partial y}\varvec{ j} + \frac{{\partial N_{i} }}{\partial z}\varvec{ k} $$
(2.47)
$$ \frac{1}{\mu }\nabla \times \varvec{A} = \frac{1}{{\mu_{x} }}\left( {\frac{{\partial A_{z} }}{\partial y} - \frac{{\partial A_{y} }}{\partial z}} \right)\varvec{i} + \frac{1}{{\mu_{y} }}\left( {\frac{{\partial A_{x} }}{\partial z} - \frac{{\partial A_{z} }}{\partial x}} \right)\varvec{j} + \frac{1}{{\mu_{z} }}\left( {\frac{{\partial A_{y} }}{\partial x} - \frac{{\partial A_{x} }}{\partial y}} \right)\varvec{k} $$
(2.48)

With the result of (2.47) and (2.48),

$$ \begin{aligned} R_{11} & = - \mathop \int \limits_{\Omega } \nabla N_{i} \times \frac{1}{\mu }\nabla \times \varvec{A} {\text{d}}v \\ & = - \left[ {\mathop \int \limits_{\Omega } \left( {\frac{1}{{\mu_{z} }}\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{y} }}{\partial x} - \frac{{\partial A_{x} }}{\partial y}} \right) - \frac{1}{{\mu_{y} }}\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{x} }}{\partial z} - \frac{{\partial A_{z} }}{\partial x}} \right)} \right){\text{d}}v} \right] \varvec{i} \\ & \quad - \left[ {\mathop \int \limits_{\Omega } \left( {\frac{1}{{\mu_{x} }}\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{z} }}{\partial y} - \frac{{\partial A_{y} }}{\partial z}} \right) - \frac{1}{{\mu_{z} }}\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{y} }}{\partial x} - \frac{{\partial A_{x} }}{\partial y}} \right)} \right){\text{d}}v} \right] \varvec{j} \\ & \quad - \left[ {\mathop \int \limits_{\Omega } \left( {\frac{1}{{\mu_{y} }}\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{x} }}{\partial z} - \frac{{\partial A_{z} }}{\partial x}} \right) - \frac{1}{{\mu_{x} }}\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{z} }}{\partial y} - \frac{{\partial A_{y} }}{\partial z}} \right)} \right){\text{d}}v} \right] \varvec{k} \\ \end{aligned} $$
(2.49)

For (2.40), the vector formulation is

$$ \nabla \left( {cd} \right) = d\nabla c + c\nabla d $$

which leads to

$$ \nabla \left( {N_{i} \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A}} \right) = \nabla N_{i} \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A} + N_{i} \nabla \left( {\frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A}} \right) $$
(2.50)

(2.50) is sorted out to:

$$ N_{i} \nabla \left( {\frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A}} \right) = \nabla \left( {N_{i} \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A}} \right) - \nabla N_{i} \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A} $$
(2.51)

Substituting (2.51) into (2.40):

$$ R_{12} = - \mathop \int \limits_{\Omega } \nabla \left( {N_{i} \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A}} \right)\varvec{ }{\text{d}}v + \mathop \int \limits_{\Omega } \nabla N_{i} \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A }\,{\text{d}}v $$
(2.52)

The vector formulation is

$$ \mathop \int \limits_{\Omega } \nabla c\, {\text{d}}v = \mathop {\oint }\limits_{s} c\varvec{n} \,{\text{d}}s $$

The following form can be derived from (2.40):

$$ R_{12} = - \mathop {\oint }\limits_{s} N_{i} \left( {\frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A}} \right)\varvec{n} \,{\text{d}}s + \mathop \int \limits_{\varOmega } \nabla N_{i} \cdot \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A }\,{\text{d}}v $$
(2.53)

The continuity at the interface (\( \frac{1}{\mu }\nabla \cdot {\varvec{A}} \)) becomes a natural interface condition. The surface integral of (2.53) will be canceled with the surface integral of (2.34), so only the volume integral term of

$$ R_{12} = \mathop \int \limits_{\Omega } \nabla N_{i} \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A} \,{\text{d}}v $$
(2.54)

The vector formulation is

$$ \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A} = \frac{1}{{\mu_{c} }}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right) $$
(2.55)
$$ \nabla N_{i} = \frac{{\partial N_{i} }}{\partial x}\varvec{ i} + \frac{{\partial N_{i} }}{\partial y}\varvec{ j} + \frac{{\partial N_{i} }}{\partial z}\varvec{ k } $$
(2.56)

Substituting (2.55) and (2.56) into (2.54):

$$ \begin{aligned} R_{12} & = \mathop \int \limits_{\Omega } \nabla N_{i} \frac{1}{{\mu_{c} }}\nabla \cdot \varvec{A}\, {\text{d}}v \\ & = \mathop \int \limits_{\Omega } \frac{1}{{\mu_{c} }}\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right){\text{d}}v\,\varvec{i} \\ & \quad + \mathop \int \limits_{\Omega } \frac{1}{{\mu_{c} }}\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right){\text{d}}v\,\varvec{j} \\ & \quad + \mathop \int \limits_{\Omega } \frac{1}{{\mu_{c} }}\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right){\text{d}}v\,\varvec{k } \\ \end{aligned} $$
(2.57)

For (2.41), we get

$$ \begin{aligned} R_{13} & = \mathop \int \limits_{\Omega } \sigma N_{i} \left( {\frac{{\partial A_{x} }}{\partial t} + \frac{\partial }{\partial x}\left( {\frac{\partial V}{\partial t}} \right)} \right){\text{d}}v\,\varvec{i} \\ & \quad + \mathop \int \limits_{\Omega } \sigma N_{i} \left( {\frac{{\partial A_{y} }}{\partial t} + \frac{\partial }{\partial y}\left( {\frac{\partial V}{\partial t}} \right)} \right){\text{d}}v\,\varvec{j} \\ & \quad + \mathop \int \limits_{\Omega } \sigma N_{i} \left( {\frac{{\partial A_{z} }}{\partial t} + \frac{\partial }{\partial z}\left( {\frac{\partial V}{\partial t}} \right)} \right){\text{d}}v\,\varvec{k } \\ \end{aligned} $$
(2.58)

Three components of the Galerkin residual of (2.32) can be obtained by synthesizing (2.49), (2.57) and (2.58):

$$ \begin{aligned} R_{x} & = - \mathop \int \limits_{\Omega } \left( {\frac{1}{{\mu_{z} }}\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{y} }}{\partial x} - \frac{{\partial A_{x} }}{\partial y}} \right) - \frac{1}{{\mu_{y} }}\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{x} }}{\partial z} - \frac{{\partial A_{z} }}{\partial x}} \right)} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\Omega } \frac{1}{{\mu_{c} }}\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\Omega } \sigma N_{i} \left( {\frac{{\partial A_{x} }}{\partial t} + \frac{\partial }{\partial x}\left( {\frac{\partial V}{\partial t}} \right)} \right){\text{d}}v \\ \end{aligned} $$
(2.59)
$$ \begin{aligned} R_{y} & = - \mathop \int \limits_{\Omega } \left( {\frac{1}{{\mu_{x} }}\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{z} }}{\partial y} - \frac{{\partial A_{y} }}{\partial z}} \right) - \frac{1}{{\mu_{z} }}\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{y} }}{\partial x} - \frac{{\partial A_{x} }}{\partial y}} \right)} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\Omega } \frac{1}{{\mu_{c} }}\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\Omega } \sigma N_{i} \left( {\frac{{\partial A_{y} }}{\partial t} + \frac{\partial }{\partial y}\left( {\frac{\partial V}{\partial t}} \right)} \right){\text{d}}v \\ \end{aligned} $$
(2.60)
$$ \begin{aligned} R_{z} & = - \mathop \int \limits_{\Omega } \left( {\frac{1}{{\mu_{y} }}\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{x} }}{\partial z} - \frac{{\partial A_{z} }}{\partial x}} \right) - \frac{1}{{\mu_{x} }}\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{z} }}{\partial y} - \frac{{\partial A_{y} }}{\partial z}} \right)} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\Omega } \frac{1}{{\mu_{c} }}\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\Omega } \sigma N_{i} \left( {\frac{{\partial A_{z} }}{\partial t} + \frac{\partial }{\partial z}\left( {\frac{\partial V}{\partial t}} \right)} \right){\text{d}}v \\ \end{aligned} $$
(2.61)

To deduce R0, the vector formulation is

$$ \begin{aligned} \nabla \cdot \left( {N_{i} \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right)} \right)} \right) & = \nabla N_{i} \cdot \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right)} \right) \\ & \quad + N_{i} \nabla \cdot \left( {\sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right)} \right)} \right) \end{aligned} $$
(2.62)

(2.62) is sorted out to:

$$ \begin{aligned} N_{i} \nabla \cdot \left( {\sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right)} \right)} \right) & = \nabla \cdot \left( {N_{i} \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right) } \right)} \right) \\ & \quad - \nabla N_{i} \cdot \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right) } \right) \end{aligned} $$
(2.63)

Substituting (2.63) into (2.38)

$$ \begin{aligned} R_{0} & = \mathop \int \limits_{\Omega } \nabla \cdot \left( {N_{i} \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right)} \right)} \right){\text{d}}v - \mathop \int \limits_{\Omega } \nabla N_{i} \cdot \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right)} \right) {\text{d}}v \\ & = \mathop {\oint }\limits_{s} N_{i} \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right)} \right) \cdot \varvec{n}{\text{d}}s - \mathop \int \limits_{\Omega } \nabla N_{i} \cdot \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right)} \right) {\text{d}}v \\ \end{aligned} $$
(2.64)

According to the conductor surface condition of \( J_{n} = 0 \), the surface integral term of (2.64) is zero, i.e.,

$$ R_{0} = - \mathop \int \limits_{\Omega } \nabla N_{i} \cdot \sigma \left( { - \frac{{\partial \varvec{A}}}{\partial t} - \nabla \left( {\frac{\partial V}{\partial t}} \right) } \right) {\text{d}}v $$
(2.65)

Upon a simple vector operation, (2.65) can be rewritten as

$$ \begin{aligned} R_{0} & = \mathop \int \limits_{\Omega } \sigma \left( {\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{x} }}{\partial t} + \frac{\partial }{\partial x}\left( {\frac{\partial V}{\partial t}} \right)} \right)} \right){\text{d}}v + \mathop \int \limits_{\Omega } \sigma \left( {\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{y} }}{\partial t} + \frac{\partial }{\partial y}\left( {\frac{\partial V}{\partial t}} \right)} \right)} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\Omega } \sigma \left( {\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{z} }}{\partial t} + \frac{\partial }{\partial z}\left( {\frac{\partial V}{\partial t}} \right)} \right)} \right){\text{d}}v \\ \end{aligned} $$
(2.66)

4.2.2 Non-Eddy Current Region

In non-eddy current region ω, conductivity σ = 0; the third term in (2.59), (2.60) and (2.61) will disappear, and μ = μ0, based on the above deduction, the corresponding Galerkin residuals of (2.34) are as

$$ \begin{aligned} R_{x}^{\prime} & = - \mathop \int \limits_{\omega } \left( {\frac{1}{{\mu_{0} }}\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{y} }}{\partial x} - \frac{{\partial A_{x} }}{\partial y}} \right) - \frac{1}{{\mu_{0} }}\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{x} }}{\partial z} - \frac{{\partial A_{z} }}{\partial x}} \right)} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\omega } \frac{1}{{\mu_{0} }}\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right){\text{d}}v \\ \end{aligned} $$
(2.67)
$$ \begin{aligned} R_{y}^{\prime} & = - \mathop \int \limits_{\omega } \left( {\frac{1}{{\mu_{0} }}\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{z} }}{\partial y} - \frac{{\partial A_{y} }}{\partial z}} \right) - \frac{1}{{\mu_{0} }}\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{y} }}{\partial x} - \frac{{\partial A_{x} }}{\partial y}} \right)} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\omega } \frac{1}{{\mu_{0} }}\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right){\text{d}}v \\ \end{aligned} $$
(2.68)
$$ \begin{aligned} R_{z}^{\prime} & = - \mathop \int \limits_{\omega } \left( {\frac{1}{{\mu_{0} }}\frac{{\partial N_{i} }}{\partial x}\left( {\frac{{\partial A_{x} }}{\partial z} - \frac{{\partial A_{z} }}{\partial x}} \right) - \frac{1}{{\mu_{0} }}\frac{{\partial N_{i} }}{\partial y}\left( {\frac{{\partial A_{z} }}{\partial y} - \frac{{\partial A_{y} }}{\partial z}} \right)} \right){\text{d}}v \\ & \quad + \mathop \int \limits_{\omega } \frac{1}{{\mu_{0} }}\frac{{\partial N_{i} }}{\partial z}\left( {\frac{{\partial A_{x} }}{\partial x} + \frac{{\partial A_{y} }}{\partial y} + \frac{{\partial A_{z} }}{\partial z}} \right){\text{d}}v \\ \end{aligned} $$
(2.69)

On the treatment of complicated material properties in the formulation and numerical implementation based on the potential sets, and the measurement and prediction of the corresponding material properties, can be found in the related chapters of this book or other related literatures.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, Z., Takahashi (deceased), N. (2020). Low-Frequency Electromagnetic Fields and Finite Element Method. In: Cheng, Z., Takahashi, N., Forghani, B. (eds) Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0173-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0173-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0172-2

  • Online ISBN: 978-981-15-0173-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics