Skip to main content

Microalgae Nutraceuticals: The Role of Lutein in Human Health

  • Chapter
  • First Online:

Abstract

Lutein is a carotenoid compound belonging to the xanthophyll family whose more attractive bioactivity is its antioxidant capacity. This carotenoid is mainly distributed in vegetables and fruits and is present within the macula lutea as a pigment responsible of the yellow hue. Lutein has been widely found in the pigmentation of animal tissues as well as considered as an important nutraceutical and used for the coloration of foods, drugs, and cosmetics. Recently, lutein has been found to be effective in the prevention of age-related macular degeneration, cataracts, cardiovascular diseases, and certain types of cancer, having attracted thus great attention in relation to human health. At this time, the main source for an industrial-scale production of lutein is marigold oleoresin although, each time more, continuous reports concerning lutein-producing microalgae pose the question if those microorganisms could become a feasible alternative. In fact, several microalgae strains, such as Scenedesmus almeriensis, Chlorella zofingiensis, or Muriellopsis sp., have higher lutein content than most marigold cultivars and have been shown to yield productivities hundreds of times higher than marigold crops on a per square meter basis, suggesting that, in the current state of the art, microalgae could compete with marigold or other lutein producers. The potential of the lutein as nutraceutical and its role in metabolic functions related to human health as well as its production from microalgae are reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alam, M. A., & Wang, Z. (Eds.). (2019). Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 1–655). New York, NY: Springer.

    Google Scholar 

  • An, G., & Cho, E. (2003). Preparation of the red yeast, Xanthophyllomyces dendrorhous, as feed additive with increased availability of astaxanthin. Biotechnology Letters, 25, 767–771.

    Article  CAS  PubMed  Google Scholar 

  • Bermejo, E., Ruiz-Domínguez, M. C., Cuaresma, M., Vaquero, I., Ramos-Merchante, A., Vega, J. M., Vílchez, C., & Garbayo, I. (2018). Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. Journal of Bioscience and Bioengineering, 125(6), 669–675.

    Article  CAS  PubMed  Google Scholar 

  • Bosma, T. L., Dole, J. M., & Maness, N. O. (2003). Optimizing marigold (Tagetes erecta L.) petal and pigment yield crop science. Abstract. Crop Ecology, Management & Quality, 43(6), 2118–2124.

    Google Scholar 

  • Breithaupt, D. E., Bamedi, A., & Wirt, U. (2002a). Carotenol fatty acid esters: Easy substrates for digestive enzymes. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 132, 721–728.

    Article  Google Scholar 

  • Breithaupt, D. E., Wirt, U., & Bamedi, A. (2002b). Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 50, 66–70.

    Article  CAS  PubMed  Google Scholar 

  • Buscemi, S., Corleo, D., Di Pace, F., Petroni, M. L., Satriano, A., & Marchesini, G. (2018). The effect of lutein on eye and extra-eye health. Nutrients, 10(9), 1321. https://doi.org/10.3390/nu10091321.

    Article  PubMed Central  Google Scholar 

  • Capa-Robles, W., Paniagua-Michel, J., & Soto, J. O. (2009). The biosynthesis and accumulation of beta-carotene in Dunaliella salina proceed via the glyceraldehyde 3-phosphate/pyruvate pathway. Natural Product Research, 23(11), 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  • Casal, C., Cuaresma, M., Vega, J. M., & Vilchez, C. (2011). Enhanced productivity of a lutein enriched novel acidophile microalga grown on urea. Marine Drugs, 9(1), 29–42.

    Article  CAS  Google Scholar 

  • Cerón, C. M., Campos, I., Sánchez, J. F., Acién, F. G., Molina, E., & Fernández-Sevilla, J. M. (2008). Recovery of lutein from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. Journal of Agricultural and Food Chemistry, 56(24), 11761–11766. https://doi.org/10.1021/jf8025875.

    Article  PubMed  Google Scholar 

  • Chen, C. Y., Ho, S. H., Liu, C. C., & Chang, J. S. (2017). Enhancing lutein production with Chlorella sorokiniana Mb-1 by optimizing acetate and nitrate concentrations under mixotrophic growth. Journal of the Taiwan Institute of Chemical Engineers, 79(Suppl. C), 88–96.

    Article  CAS  Google Scholar 

  • Chen, J. H., Chen, C. Y., Hasunuma, T., Kondo, A., Chang, C. H., Ng, I. S., & Chang, J. S. (2019). Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresource Technology, 278, 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Chitchumroonchokchai, C., Schwartz, S. J., & Failla, M. L. (2004). Assessment of lutein bioavailability from meals and a supplement using simulated digestion and caco-2 human intestinal cells. Journal of Nutrition, 134, 2280–2286.

    Article  CAS  PubMed  Google Scholar 

  • Chung, R. W. S., Leanderson, P., Lundberg, A. K., & Jonasson, L. (2017). Lutein exerts anti-inflammatory effects in patients with coronary artery disease. Atherosclerosis, 262, 87–93. https://doi.org/10.1016/j.atherosclerosis.2017.05.008.

    Article  CAS  PubMed  Google Scholar 

  • Cordero, B. F., Obraztsova, I., Couso, I., Leon, R., Vargas, M. A., & Rodriguez, H. (2011). Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs, 9(9), 1607–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Campo, J. A., Moreno, J., Rodriguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76, 51–59.

    Article  PubMed  Google Scholar 

  • Díaz-Santos, E. (2019). Towards the genetic manipulation of microalgae to improve the carbon dioxide fixation and the production of biofuels: Present status and future prospect. In M. Alam & Z. Wang (Eds.), Microalgae biotechnology for development of biofuel and wastewater treatment. Singapore: Springer. https://doi.org/10.1007/978-981-13-2264-8_7.

    Chapter  Google Scholar 

  • Farrow, W. M., & Tabenkin, K. (1966). Process for the preparation of lutein. U.S. Patent No. 3,280,502.

    Google Scholar 

  • Fernandez, R. X. E., Shier, N. W., & Watkins, B. A. (2000). Effect of alkali saponification, enzymatic hydrolysis and storage time on the total carotenoid concentration of Costa Rica crude palm oil. Journal of Food Composition and Analysis, 13, 179–187.

    Article  CAS  Google Scholar 

  • Fernandez-Sevilla, J. M., Fernandez, F. G. A., & Grima, E. M. (2010). Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology, 86, 27–40.

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Sevilla, J. M., Acién Fernández, F. G., & Molina Grima, E. (2010). Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology, 86, 27–40. https://doi.org/10.1007/s00253-009-2420-y.

    Article  PubMed  Google Scholar 

  • Francisco, D. V., & Octavio, P. L. (1996). Correlation of HPLC and AOAC methods to assess the all-trans-lutein content in marigold flowers. Journal of the Science of Food and Agriculture, 72, 283–290.

    Article  Google Scholar 

  • Gao, C., Xiong, W., Zhang, Y., Yuan, W., & Wu, Q. (2008). Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance. Journal of Microbiological Methods, 75(3), 437–440.

    Article  CAS  PubMed  Google Scholar 

  • Gong, M., Wang, Y., & Bassi, A. (2017). Process analysis and modelling of a single-step lutein extraction method for wet microalgae. Applied Microbiology and Biotechnology, 101, 80–89. https://doi.org/10.1007/s00253-017-8496-x.

    Article  Google Scholar 

  • Gong, X., Smith, J. R., Swanson, H. M., & Rubin, L. P. (2018). Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms. Molecules, 23, 905.

    Article  PubMed Central  CAS  Google Scholar 

  • Granado, F., Olmedilla, B., Gil-Martinez, E., & Blanco, I. A. (2001). Fast, reliable and low-cost saponification protocol for analysis of carotenoids in vegetables. Journal of Food Composition and Analysis, 14, 479–489.

    Article  CAS  Google Scholar 

  • Granado, F., Olmedilla, B., & Blanco, I. (2002). Serum depletion and bioavailability of lutein in type I diabetic patients. European Journal of Nutrition, 41, 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Granado, F., Olmedilla, B., & Blanco, I. (2003). Nutritional and clinical relevance of lutein in human health. The British Journal of Nutrition, 90(3), 487–502. https://doi.org/10.1079/BJN2003927.

    Article  CAS  PubMed  Google Scholar 

  • Grether-Beck, S., Marini, A., Jaenicke, T., Stahl, W., & Krutmann, J. (2017). Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: Results from a double-blinded, placebo-controlled, crossover study. British Journal of Dermatology, 176, 1231–1240. https://doi.org/10.1111/bjd.15080.

    Article  CAS  PubMed  Google Scholar 

  • Hejazi, M. A., De Lamarliere, C., Rocha, J. M. S., Vermuë, M., Tramper, J., & Wijffels, R. H. (2002). Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnology and Bioengineering, 79, 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Ho, S. H., Chan, M. C., Liu, C. C., Chen, C. Y., Lee, W. L., Lee, D. J., & Chang, J. S. (2014). Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152, 275–282.

    Google Scholar 

  • Huang, W., Lin, Y., He, M., Gong, Y., & Huang, J. (2018). Induced high-yield production of zeaxanthin, lutein, and β-carotene by a mutant of Chlorella zofingiensis. Journal of Agricultural and Food Chemistry, 66(4), 891–897.

    Article  CAS  PubMed  Google Scholar 

  • Jian-Hao, L., Duu-Jong, L., & Jo-Shu, C. (2015). Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 184, 421–428.

    Article  CAS  Google Scholar 

  • Khachik, F. (1999). Process for extraction and purification of lutein, zeaxanthin and rare carotenoids from marigold flowers and plants. Publication number: WO1999020587A1. U.S. Patent No. 7,173,145.

    Google Scholar 

  • Kimura, M., Rodriguez-Amaya, D. B., & Godoy, H. T. (1990). Assessment of the saponification step in the quantitative determination of carotenoids and provitamins A. Food Chemistry, 35, 187–195.

    Article  CAS  Google Scholar 

  • Koh, H.-H., Murray, I. J., Nolan, D., Carden, D., Feather, J., & Beatty, S. (2004). Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: a pilot study. Experimental Eye Research, 79(1), 21–27.

    Google Scholar 

  • Koushan, K., Rusovici, R., Li, W., Ferguson, L. R., & Chalam, K. V. (2013). The role of lutein in eye-related disease. Nutrients, 5(5), 1823–1839. https://doi.org/10.3390/nu5051823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kull, D. R., & Pfander, H. (1997). Isolation and structure elucidation of two (Z)-isomers of lutein from the petals of rape (Brassica napus). Journal of Agricultural and Food Chemistry, 45, 4201–4203.

    Article  CAS  Google Scholar 

  • Landrum, J. T., Bone, R. A., Joa, H., Kilburn, M. D., Moore, L. L., & Sprague, K. E. A. (1997). One year study of the macular pigment: The effect of 140 days of a lutein supplement. Experimental Eye Research, 65, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, E., & Christensen, L. P. (2005). Simple saponification method for the quantitative determination of carotenoids in green vegetables. Journal of Agricultural and Food Chemistry, 53, 6598–6602.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Jiang, Y., & Chen, F. (2002). Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. Journal of Agricultural and Food Chemistry, 50, 1070–1072.

    Article  CAS  PubMed  Google Scholar 

  • Liang, S. X., Tang, D. C., & Yang, Y. Z. (2007). Comparative studies of fresh flower yield and lutein content of marigold. Northern Horticulture, 6, 124–125.

    Google Scholar 

  • Liao, S. M., Zheng, W., Zhu, J., et al. (2017). Specific correlation between the major chromosome 10q26 haplotype conferring risk for age-related macular degeneration and the expression of HTRA1. Molecular Vision, 23, 318–333.

    PubMed  PubMed Central  Google Scholar 

  • Lin, J. H., Lee, D. J., & Chang, J. S. (2015). Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 184, 421–428.

    Article  CAS  PubMed  Google Scholar 

  • Ma, R., Zhao, X., Xie, Y., Ho, S. H., & Chen, J. (2019). Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresource Technology, 275, 416–420.

    Article  CAS  PubMed  Google Scholar 

  • Maci, S., & Santos, R. (2015). The beneficial role of lutein and zeaxanthin in cataracts. Nutrafoods, 14, 63. https://doi.org/10.1007/s13749-015-0014-0.

    Article  CAS  Google Scholar 

  • Manayi, A., Abdollahi, M., Raman, T., Nabayi, S. F., Habtemariam, S., Daglia, M., & NAbayi, S. M. (2016). Lutein and cataract: From bench to bedside. Critical Reviews in Biotechnology, 36(5), 829–839.

    Article  CAS  PubMed  Google Scholar 

  • Maria, A. G., Graziano, R., & D’Orazio, N. (2015). Carotenoids: Potential allies of cardiovascular health. Food & Nutrition Research, 59, 1. https://doi.org/10.3402/fnr.v59.26762.

    Article  Google Scholar 

  • März, U. (2015). FOD025E-The Global Market for Carotenoids. In: BCC Research.

    Google Scholar 

  • McWilliams, A. (2018). The global market for carotenoids. FOD025F. BCC research report overview. Wellesley, MA: BCC Publishing.

    Google Scholar 

  • Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., & Morais, R. (2001). Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability. Journal of Applied Phycology, 13, 19–24.

    Article  Google Scholar 

  • Natchigal, A. M., Stringheta, A. C. O., Bertoldi, M. C., & Stringheta, P. C. (2012). Quantification and characterization of lutein from Tagetes (Tagetes patula L.) and Calendula (Calendula officinalis L.) flowers. Acta Horticulturae, 939, 309–314.

    Article  Google Scholar 

  • Nonomura, A. M. (1987). Process for producing a naturally-derived carotene/oil composition by direct extraction from algae. U.S. Patent No. 4,680,314.

    Google Scholar 

  • Park, P. K., Kim, E. Y., & Chu, K. H. (2007). Chemical disruption of yeast cells for the isolation of carotenoid pigments. Separation and Purification Technology, 53, 148–152.

    Article  CAS  Google Scholar 

  • Pennington, K. L., & DeAngelis, M. M. (2016). Epidemiology of age-related macular degeneration (AMD): Associations with cardiovascular disease phenotypes and lipid factors. Eye and Vision, 3, 34. https://doi.org/10.1186/s40662-016-0063-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrone, S., Tei, M., Longini, M., & Buonocore, G. (2016). The multiple facets of lutein: A call for further investigation in the perinatal period. Oxidative Medicine and Cellular Longevity, 2016, 1–8. https://doi.org/10.1155/2016/5381540.

    Article  Google Scholar 

  • Pintea, A., Bele, C., Andrei, S., & Socaciu, C. (2003). HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47, 37–40.

    Google Scholar 

  • Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, D. B., Mercadantea, Z. A., & Mariutti, B. L. R. (2019). Marigold carotenoids: Much more than lutein esters. Food Research International, 119, 653–664.

    Article  CAS  PubMed  Google Scholar 

  • Roukas, T., & Mantzouridou, F. (2001). An improved method for extraction of β-carotene from Blakeslea trispora. Applied Biochemistry and Biotechnology, 90, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Ruane M. (1977). Extraction of caroteniferous materials from algae. Australia Patent No. 72,395,74.

    Google Scholar 

  • Sathasivam, R., & Ki, J. S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs, 16(1), 26. https://doi.org/10.3390/md16010026.

    Article  PubMed Central  Google Scholar 

  • Schwender, J., Gemünden, C., & Lichtenthaler, H. K. (2001). Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta, 212(3), 416–423.

    Article  CAS  PubMed  Google Scholar 

  • Seddon, J. M., Ajani, U. A., Sperduto, R. D., Hiller, R., Blair, N., Burton, T. C., Farber, M. D., Gragoudas, E. S., Haller, J., et al. (1994). Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA, 272, 1413–1420.

    Article  CAS  PubMed  Google Scholar 

  • Shi, X. M., Jiang, Y., & Chen, F. (2002). High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnology Progress, 18, 723–772.

    Article  CAS  PubMed  Google Scholar 

  • Sommerburg, O., Keunen, J. E., Bird, A. C., & van Kuijk, F. J. (1998). Fruits and vegetables that are sources for lutein and zeaxanthin: The macular pigment in human eyes. The British Journal of Ophthalmology, 82(8), 907–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subagio, A., Sari, P., & Morita, N. (2001). Simultaneous determination of (+)-catechin and (-)-epicatechin in cacao and its products by high-performance liquid chromatography with electrochemical detection. Phytochemical Analysis, 12(4), 271–276.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Z., Li, T., Zhou, Z., & Jiang, Y. (2015). Microalgae as a source of lutein: Chemistry, biosynthesis and carotenogenesis. In C. Posten & S. Feng Chen (Eds.), Microalgae biotechnology. Advances in biochemical engineering/biotechnology (p. 153). New York, NY: Springer.

    Google Scholar 

  • Trumbo, P. R., & Ellwood, K. C. (2006). Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: An evaluation using the Food and Drug Administration’s evidence-based review system for health claims. The American Journal of Clinical Nutrition, 84(5), 971–974. https://doi.org/10.1093/ajcn/84.5.971.

    Article  CAS  PubMed  Google Scholar 

  • Varela, J. C., Pereira, H., Vila, M., & León, R. (2015). Production of carotenoids by microalgae: Achievements and challenges. Photosynthesis Research, 125(3), 423–436. Review. Erratum in: Photosynth Res. 2016;127(2):285–286.

    Article  CAS  PubMed  Google Scholar 

  • Wei, D., Chen, F., Chen, G., Zhang, X., Liu, L., & Zhang, H. (2008). Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Science in China. Series C, Life Sciences, 51(12), 1088–1093.

    Article  CAS  PubMed  Google Scholar 

  • Woodall, A. A., Lee, S. W., Weesie, R. J., Jackson, M. J., & Britton, G. (1997). Oxidation of carotenoids by free radicals: Relationship between structure and reactivity. Biochimica et Biophysica Acta, General Subjects, 1336, 33–42.

    Article  CAS  Google Scholar 

  • Xiao, Y., He, X., Ma, Q., Lu, Y., Bai, F., Dai, J., & Wu, Q. (2018). Photosynthetic accumulation of lutein in Auxenochlorella protothecoides after heterotrophic growth. Marine Drugs, 16(8), E283.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Y., Ho, S. H., Chen, C. N. N., Chen, C. Y., Ng, I. S., Jing, K. J., Chang, J. S., & Lu, Y. (2013). Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation. Bioresource Technology, 144, 435–444.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y., Zhao, X., Chen, J., Yang, X., Ho, S. H., Wang, B., Chang, J. S., & Shen, Y. (2017). Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt. Bioresource Technology, 244(Pt 1), 664–671. https://doi.org/10.1016/j.biortech.2017.08.022.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y., Lu, K., Zhao, X., Ma, R., Chen, J., & Ho, S. H. (2019). Manipulating nutritional conditions and salinity-gradient stress for enhanced lutein production in marine microalga Chlamydomonas sp. Biotechnology Journal, 14(4), e1800380.

    Article  PubMed  CAS  Google Scholar 

  • Yen, H. W., Hu, I. C., Chen, C. Y., Ho, S. H., Lee, D. J., & Chang, J. S. (2013). Microalgae-based biorefinery-from biofuels to natural products. Bioresource Technology, 135, 166–174.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Ma, R., Liu, X., Ho, S.-H., Xie, Y., & Chen, J. (2019). Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42(3), 435–443.

    Google Scholar 

  • Zielińska, M. A., Wesołowska, A., Pawlus, B., & Hamułka, J. (2017). Health effects of carotenoids during pregnancy and lactation. Nutrients, 9(8), 838. https://doi.org/10.3390/nu9080838.

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spinola, M.V., Díaz-Santos, E. (2020). Microalgae Nutraceuticals: The Role of Lutein in Human Health. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_7

Download citation

Publish with us

Policies and ethics