Skip to main content

Microalgae in Human Health and Medicine

  • Chapter
  • First Online:
Microalgae Biotechnology for Food, Health and High Value Products

Abstract

Microalgae contain various components those that have shown a great potential to be used for human health and medicine. The therapeutic properties of microalgae exhibit vast range of applications like cardiovascular health, anticancer, anti-inflammatory, anticoagulant, antiviral, antibacterial, antifungal, and others in human medicinal products. Microalgal components are used to enhance immune system and to reduce blood cholesterol and are effective against hypercholesterolemia. Microalgae contain effective components that can remove harmful elements from the human body and have properties of antitumor, stomach ulcer, and wound healing. The extract of microalgae enhances blood hemoglobin concentration and decrease blood sugar level. Some microalgal species are extensively used to form analgesic, broncholytic, and antihypertensive medicines. Large quantities of bioactive components obtained from microalgae have strong beneficial properties which reduce the production of inflammatory compounds, effective against muscle degradation. Microalgal bioactive components play a potential role in disease-inhibiting and health-promoting medicines like capsules, tablets, powders, and gels. This article also reviews the health risks regarding microalgae intake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam, M. A., & Wang, Z. (Eds.). (2019). Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 1–655). New York, NY: Springer.

    Google Scholar 

  • Ambati, R., Phang, S.-M., Ravi, S., & Aswathanarayana, R. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Marine Drugs, 12(1), 128–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anbuchezhian, R., Karuppiah, V., & Li, Z. (2015). Prospect of marine algae for production of industrially important chemicals. In Algal biorefinery: An integrated approach (pp. 195–217). New York, NY: Springer.

    Chapter  Google Scholar 

  • Ansorena, D., Astiasarán, I., & Dominguez, H. (2013). Development of nutraceuticals containing marine algae oils. Cambridge: Woodhead Publishing Limited.

    Book  Google Scholar 

  • Apt, K. E., & Behrens, P. W. (1999). Commercial developments in microalgal biotechnology. Journal of Phycology, 35(2), 215–226.

    Article  Google Scholar 

  • Ayelet, H., Dror, H., Daniella, M., Hofit, C., Iris, B., Yehuda, K., Ayelet, G., Yariv, G., Ami, B. A., & Aviv, S. (2008). A 9-cis beta-carotene-enriched diet inhibits atherogenesis and fatty liver formation in LDL receptor knockout mice. Journal of Nutrition, 138(10), 1923.

    Article  Google Scholar 

  • Azabji-Kenfack, M., Dikosso, S. E., Loni, E., Onana, E., Sobngwi, E., Gbaguidi, E., Kana, A. N., Nguefack-Tsague, G., Von der Weid, D., & Njoya, O. (2011). Potential of Spirulina platensis as a nutritional supplement in malnourished HIV-infected adults in Sub-Saharan Africa: A randomised, single-blind study. Nutrition and Metabolic Insights, 4, 29.

    Google Scholar 

  • Batista, A. P., Gouveia, L., Bandarra, N. M., Franco, J. M., & Raymundo, A. (2013). Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2(2), 164–173.

    Article  Google Scholar 

  • Becker, E. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210.

    Article  CAS  PubMed  Google Scholar 

  • Becker, E., & Venkataraman, L. (1980). Production and processing of algae in pilot plant scale experiences of the Indo-German project. In Algae biomass: Production and use [sponsored by the National Council for Research and Development, Israel and the Gesellschaft fur Strahlen-und Umweltforschung (GSF), Munich, Germany]; editors, Gedaliah Shelef, Carl J. Soeder. Amsterdam: Elsevier.

    Google Scholar 

  • Becker, E. W. (2013). Microalgae for human and animal nutrition. London: Blackwell Science.

    Book  Google Scholar 

  • Belay, A. (1994). Production of high quality spirulina at earthrise farms. Algal biotechnology in the Asia-Pacific region (pp. 92–102). Kuala Lumpur: University of Malaya.

    Google Scholar 

  • Belay, A., Kato, T., & Ota, Y. (1996). Spirulina (Arthrospira): Potential application as an animal feed supplement. Journal of Applied Phycology, 8(4-5), 303–311.

    Google Scholar 

  • Belay, A., Ota, Y., Miyakawa, K., & Shimamatsu, H. (1993). Current knowledge on potential health benefits of Spirulina. Journal of Applied Phycology, 5(2), 235–241.

    Google Scholar 

  • Benamotz, A., & Levy, Y. (1996). Bioavailability of a natural isomer mixture compared with synthetic all-trans beta-carotene in human serum. American Journal of Clinical Nutrition, 63(5), 729–734.

    Article  CAS  Google Scholar 

  • Bishop, W. M., & Zubeck, H. M. (2012). Evaluation of microalgae for use as nutraceuticals and nutritional supplements. Nutrition & Food Sciences, 2(5), 147.

    Google Scholar 

  • Bixler, H. J., & Porse, H. (2011). A decade of change in the seaweed hydrocolloids industry. Journal of Applied Phycology, 23(3), 321–335.

    Article  Google Scholar 

  • Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, and fermenters. In Progress in industrial microbiology (Vol. 35, pp. 313–321). Amsterdam: Elsevier.

    Google Scholar 

  • Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialisation. Journal of Applied Phycology, 25(3), 743–756.

    Article  CAS  Google Scholar 

  • Buono, S., Langellotti, A. L., Martello, A., Rinna, F., & Fogliano, V. (2014). Functional ingredients from microalgae. Food & Function, 5(8), 1669–1685.

    Article  CAS  Google Scholar 

  • Burlew, J. S. (1953). Algal culture from laboratory to pilot plant. Algal culture from laboratory to pilot plant. Washington, DC: Carnegie Institution of Washington.

    Google Scholar 

  • Bux, F., & Chisti, Y. (2016). Algae biotechnology: Products and processes. New York, NY: Springer.

    Book  Google Scholar 

  • Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5, 58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carfagna, S., Salbitani, G., Bottone, C., & Vona, V. (2016). Galdieria sulphuraria as a possible source of food colorant. Journal of Nutritional Ecology and Food Research, 3(1), 67–70.

    Google Scholar 

  • Chacón-Lee, T. L., & González-Mariño, G. E. (2010). Microalgae for “healthy” foods—Possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655–675.

    Article  PubMed  Google Scholar 

  • Chai, S. K., Kim, B., Pham, T. X., Yang, Y., Weller, C. L., Carr, T. P., Park, Y. K., & Lee, J. Y. (2015). Hypolipidemic effect of a blue-green alga (Nostoc commune) is attributed to its nonlipid fraction by decreasing intestinal cholesterol absorption in C57BL/6J mice. Journal of Medicinal Food, 18(11), 1214.

    Google Scholar 

  • Cheong, S. H., Kim, M. Y., Sok, D. E., Hwang, S. Y., Kim, J. H., Kim, H. R., Lee, J. H., Kim, Y. B., & Kim, M. R. (2010). Spirulina prevents atherosclerosis by reducing hypercholesterolemia in rabbits fed a high-cholesterol diet. Journal of Nutritional Science and Vitaminology, 56(1), 34–40.

    Google Scholar 

  • Chew, B. P., & Park, J. S. (2004). Carotenoid action on the immune response. Journal of Nutrition, 134(1), 257S.

    Article  CAS  PubMed  Google Scholar 

  • Ciferri, O. (1983). Spirulina, the edible microorganism. Microbiological Reviews, 47(4), 551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, M., Costa-Rodrigues, J., Fernandes, M. H., Barros, P., Vasconcelos, V., & Martins, R. (2012). Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Marine Drugs, 10(10), 2181–2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva Vaz, B., Moreira, J. B., de Morais, M. G., & Costa, J. A. V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73–77.

    Article  Google Scholar 

  • Damonte, E. B., Matulewicz, M. C., & Cerezo, A. S. (2004). Sulfated seaweed polysaccharides as antiviral agents. Current Medicinal Chemistry, 11(18), 2399.

    Article  CAS  PubMed  Google Scholar 

  • de Jesús Paniagua-Michel, J., Morales-Guerrero, E., & Soto, J. O. (2015). Microalgal biotechnology: Biofuels and bioproducts. In Springer handbook of marine biotechnology (pp. 1355–1370). New York, NY: Springer.

    Chapter  Google Scholar 

  • Devi, M., & Venkataraman, L. (1983). Supplementary value of the proteins of blue green algae Spirulina platensis to rice and wheat proteins. Nutrition Reports International, 28(5), 1029–1035.

    Google Scholar 

  • Draaisma, R. B., Wijffels, R. H., Slegers, P. E., Brentner, L. B., Roy, A., & Barbosa, M. J. (2013). Food commodities from microalgae. Current Opinion in Biotechnology, 24(2), 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., & Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends in Food Science & Technology, 16(9), 389–406.

    Article  CAS  Google Scholar 

  • Dvir, I., Chayoth, R., Sod-Moriah, U., Shany, S., Nyska, A., Stark, A. H., Madar, Z., & Arad, S. M. (2000). Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats. British Journal of Nutrition, 84(4), 469–476.

    Google Scholar 

  • Endo, J., & Arita, M. (2016). Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. Journal of Cardiology, 67(1), 22–27.

    Article  PubMed  Google Scholar 

  • Enzing, C., Ploeg, M., Barbosa, M., & Sijtsma, L. (2014). Microalgae-based products for the food and feed sector: An outlook for Europe. JRC scientific and policy reports (pp. 19–37). Brussels: European Union.

    Google Scholar 

  • Fennell, B., Carolan, S., Pettit, G., & Bell, A. (2003). Effects of the antimitotic natural product dolastatin 10, and related peptides, on the human malarial parasite Plasmodium falciparum. Journal of Antimicrobial Chemotherapy, 51(4), 833–841.

    Article  CAS  PubMed  Google Scholar 

  • Fiedor, J., & Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 6(2), 466–488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finney, K., Pomeranz, Y., & Bruinsma, B. (1984). Use of algae Dunaliella as a protein supplement in bread. Cereal Chemistry, 61, 402.

    Google Scholar 

  • Garcíagonzález, M., Moreno, J., Manzano, J. C., Florencio, F. J., & Guerrero, M. G. (2005). Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 115(1), 81–90.

    Google Scholar 

  • Gardeva, E., Toshkova, R., Minkova, K., & Gigova, L. (2009). Cancer protective action of polysaccharide, derived from red microalga Porphyridium cruentum—A biological background. Biotechnology & Biotechnological Equipment, 23(Suppl 1), 783–787.

    Google Scholar 

  • Graziani, G., Schiavo, S., Nicolai, M. A., Buono, S., Fogliano, V., Pinto, G., & Pollio, A. (2013). Microalgae as human food: Chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food & Function, 4(1), 144–152.

    Google Scholar 

  • Guzman, S., Gato, A., & Calleja, J. (2001). Antiinflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytotherapy Research, 15(3), 224–230.

    Google Scholar 

  • Habib, M. A. B. (2008). Review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Hayashi, T., Hayashi, K., Maeda, M., & Kojima, I. (1996). Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. Journal of Natural Products, 59(1), 83–87.

    Google Scholar 

  • He, K., Song, Y., Daviglus, M. L., Liu, K., Van Horn, L., Dyer, A. R., & Greenland, P. (2004). Accumulated evidence on fish consumption and coronary heart disease mortality: A meta-analysis of cohort studies. Circulation, 109(22), 2705–2711.

    Article  PubMed  Google Scholar 

  • Hee, L. E., Ji-Eun, P., Young-Ju, C., Kap-Bum, H., & Wha-Young, K. (2008). A randomized study to establish the effects of Spirulina in type 2 diabetes mellitus patients. Nutrition Research and Practice, 2(4), 295–300.

    Google Scholar 

  • Hernández-Corona, A., Nieves, I., Meckes, M., Chamorro, G., & Barron, B. L. (2002). Antiviral activity of Spirulina maxima against herpes simplex virus type 2. Antiviral Research, 56(3), 279–285.

    Google Scholar 

  • Hiromi, M., Jiro, T., Hiroki, T., & Isao, T. (2008). Effects of astaxanthin on human blood rheology. Journal of Clinical Biochemistry and Nutrition, 43(2), 69–74.

    Google Scholar 

  • Hochman, G., & Zilberman, D. (2014). Algae farming and its bio-products. In Plants and BioEnergy (pp. 49–64). New York, NY: Springer.

    Chapter  Google Scholar 

  • Holdt, S. L., Kraan, S., Critchley, A., Oliveira, E. C., Cabellopasini, A., Weinberger, F., Hennequart, F., & Zuccarello, G. C. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23(3), 543–597.

    Article  CAS  Google Scholar 

  • Hudek, K., Davis, L., Ibbini, J., & Erickson, L. (2014). Commercial products from algae. Algal biorefineries. New York, NY: Springer.

    Google Scholar 

  • Iwata, K., Inayama, T., & Kato, T. (1990). Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. Journal of Nutritional Science and Vitaminology, 36(2), 165.

    Google Scholar 

  • Jin, E., Feth, B., & Melis, A. (2010). A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnology and Bioengineering, 81(1), 115–124.

    Google Scholar 

  • Katircioglu, H., Beyatli, Y., Aslim, B., Yüksekdag, Z., & Atici, T. (2005). Screening for antimicrobial agent production of some microalgae in freshwater. Internet Journal of Microbiology, 2, 1.

    Google Scholar 

  • Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474(7351), 327–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinegris, D. M. M., Es, M. A. V., Janssen, M., Brandenburg, W. A., & Wijffels, R. H. (2010). Carotenoid fluorescence in Dunaliella salina. Journal of Applied Phycology, 22(5), 645–649.

    Google Scholar 

  • Ku, C. S., Kim, B., Pham, T. X., Yang, Y., Wegner, C. J., Park, Y.-K., Balunas, M., & Lee, J.-Y. (2015). Blue-green algae inhibit the development of atherosclerotic lesions in apolipoprotein E knockout mice. Journal of Medicinal Food, 18(12), 1299–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S. R., Hosokawa, M., & Miyashita, K. (2013). Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Marine Drugs, 11(12), 5130–5147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari, P., Kumar, M., Gupta, V., Reddy, C. R. K., & Jha, B. (2010). Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chemistry, 120(3), 749–757.

    Article  CAS  Google Scholar 

  • Kyle, D. J. (2001). The large-scale production and use of a single-cell oil highly enriched in docosahexaenoic acid. ACS Symposium, 788, 92–107.

    Article  CAS  Google Scholar 

  • Lee, Y.-K. (1997). Commercial production of microalgae in the Asia-Pacific rim. Journal of Applied Phycology, 9(5), 403–411.

    Article  Google Scholar 

  • Li, Y., Horsman, M., Nan, W., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24(4), 815–820.

    CAS  PubMed  Google Scholar 

  • Liang, S., Liu, X., Chen, F., & Chen, Z. (2004). Current microalgal health food R & D activities in China. In Asian pacific phycology in the 21st century: Prospects and challenges (pp. 45–48). New York, NY: Springer.

    Chapter  Google Scholar 

  • Liu, J., Sun, Z., Gerken, H., Liu, Z., Jiang, Y., & Chen, F. (2014). Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Marine Drugs, 12(6), 3487–3515.

    Google Scholar 

  • Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Marine Drugs, 9(6), 1056–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160–167.

    Google Scholar 

  • Markou, G., Vandamme, D., & Muylaert, K. (2014). Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 65, 186–202.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Hernández, G. B., Castillejo, N., Carrión-Monteagudo, M. D. M., Artés, F., & Artés-Hernández, F. (2018). Nutritional and bioactive compounds of commercialized algae powders used as food supplements. Food Science and Technology International, 24(2), 172–182.

    Article  PubMed  CAS  Google Scholar 

  • Martins, D., Custódio, L., Barreira, L., Pereira, H., Ben-Hamadou, R., Varela, J., & Abu-Salah, K. (2013). Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Marine Drugs, 11(7), 2259–2281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    Article  CAS  Google Scholar 

  • Mayfield, S. P., Manuell, A. L., Chen, S., Wu, J., Tran, M., Siefker, D., Muto, M., & Marin-Navarro, J. (2007). Chlamydomonas reinhardtii chloroplasts as protein factories. Current Opinion in Biotechnology, 18(2), 126–133.

    Google Scholar 

  • Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(5-6), 477–489.

    Article  CAS  Google Scholar 

  • Mobin, S., & Alam, F. (2017). Some promising microalgal species for commercial applications: A review. Energy Procedia, 110, 510–517.

    Article  CAS  Google Scholar 

  • Mobin, S., Kanai, K., & Yoshikoshi, K. (2001). Effects of feeding levels on the growth and survival of larval and juvenile Japanese flounder Paralichthys olivaceus. Aquaculture Science, 49(2), 207–218.

    Google Scholar 

  • Monego, D. L., da Rosa, M. B., & do Nascimento, P. C. (2017). Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review. Food Chemistry, 217, 37–44.

    Article  CAS  PubMed  Google Scholar 

  • Mulvenna, V., Dale, K., Priestly, B., Mueller, U., Humpage, A., Shaw, G., Allinson, G., & Falconer, I. (2012). Health risk assessment for cyanobacterial toxins in seafood. International Journal of Environmental Research and Public Health, 9(3), 807–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai, H., Murata, M., Torigoe, K., Satake, M., & Yasumoto, T. (1992). Gambieric acids, new potent antifungal substances with unprecedented polyether structures from a marine dinoflagellate Gambierdiscus toxicus. The Journal of Organic Chemistry, 57(20), 5448–5453.

    Article  CAS  Google Scholar 

  • Nakano, S., Takekoshi, H., & Nakano, M. (2010). Chlorella pyrenoidosa supplementation reduces the risk of anemia, proteinuria and edema in pregnant women. Plant Foods for Human Nutrition, 65(1), 25–30.

    Google Scholar 

  • Nascimento, E. S. D. (2015). Obtenção de hidrolisado proteico de sementes de quiabo Abelmoschus esculentus (L.) Moench e sua capacidade antioxidante. Doctoral Dissertation. Universidade Federal da Paraíba.

    Google Scholar 

  • Nazih, H., & Bard, J.-M. (2018). Microalgae in human health: interest as a functional food. In Microalgae in health and disease prevention (pp. 211–226). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Olivares, H. G., Lagos, N. M., Gutierrez, C. J., Kittelsen, R. C., Valenzuela, G. L., & Lillo, M. E. H. (2016). Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile. Environmental Monitoring and Assessment, 188(1), 1–11.

    Article  Google Scholar 

  • Paniagua-Michel, J. (2015). Chapter 16 – Microalgal nutraceuticals. In Handbook of marine microalgae. London: Academic Press.

    Google Scholar 

  • Patil, V., Tran, K.-Q., & Giselrød, H. R. (2008). Towards sustainable production of biofuels from microalgae. International Journal of Molecular Sciences, 9(7), 1188–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, J., Yuan, J. P., Wu, C. F., & Wang, J. H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs, 9(10), 1806–1828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaza, M., Cifuentes, A., & Ibáñez, E. (2008). In the search of new functional food ingredients from algae. Trends in Food Science & Technology, 19(1), 31–39.

    Article  CAS  Google Scholar 

  • Plaza, M., Herrero, M., Cifuentes, A., & Ibanez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57(16), 7159–7170.

    Article  CAS  PubMed  Google Scholar 

  • Ponce-Canchihuamán, J. C., Pérez-Méndez, O., Hernández-Muñoz, R., Torres-Durán, P. V., & Juárez-Oropeza, M. A. (2010). Protective effects of Spirulina maxima on hyperlipidemia and oxidative-stress induced by lead acetate in the liver and kidney. Lipids in Health and Disease, 9(1), 35.

    Google Scholar 

  • Pratt, R. (1940). Influence of the size of the inoculum on the growth of chlorella vulgaris in freshly prepared culture medium. American Journal of Botany, 27(1), 52–56.

    Article  CAS  Google Scholar 

  • Pshenichkin, S. P., & Wise, B. C. (1995). Okadaic acid increases nerve growth factor secretion, mRNA stability, and gene transcription in primary cultures of cortical astrocytes. The Journal of Biological Chemistry, 270(11), 5994–5999.

    Article  CAS  PubMed  Google Scholar 

  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648.

    Article  CAS  PubMed  Google Scholar 

  • Raposo, M., de Morais, R., & Bernardo de Morais, A. (2013). Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs, 11(1), 233–252.

    Article  PubMed  Google Scholar 

  • Rasala, B. A., & Mayfield, S. P. (2015). Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research, 123(3), 227–239.

    Article  CAS  PubMed  Google Scholar 

  • Rastall, R. A., Gibson, G. R., Gill, H. S., Guarner, F., Klaenhammer, T. R., Pot, B., Reid, G., Rowland, I. R., & Sanders, M. E. (2010). Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: An overview of enabling science and potential applications. FEMS Microbiology Ecology, 52(2), 145–152.

    Article  CAS  Google Scholar 

  • Riediger, N. D., Othman, R. A., Miyoung, S., & Moghadasian, M. H. (2009). A systemic review of the roles of n-3 fatty acids in health and disease. Journal of the American Dietetic Association, 109(4), 668–679.

    Article  CAS  PubMed  Google Scholar 

  • Romay, C., Gonzalez, R., Ledon, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein and Peptide Science, 4(3), 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Ruegg, R. (1984). Extraction process for beta-carotene. U.S. Patent No. US4439629A. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Ryckebosch, E., Bruneel, C., Muylaert, K., & Foubert, I. (2012). Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technology, 24(6), 128–130.

    Article  CAS  Google Scholar 

  • Saiki, I., Murata, J., Fujii, H., & Kato, T. (2004). Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga Spirulina platensis. Nutritional Sciences, 7(3), 144–150.

    Google Scholar 

  • Salmeán, G. G., Castillo, L. H. F., & Chamorro-Cevallos, G. (2015). Nutritional and toxicological aspects of Spirulina (Arthrospira). Nutrición Hospitalaria, 32(1), 34–40.

    Google Scholar 

  • Samarakoon, K., & Jeon, Y.-J. (2012). Bio-functionalities of proteins derived from marine algae—A review. Food Research International, 48(2), 948–960.

    Article  CAS  Google Scholar 

  • Sampath-Wiley, P., Neefus, C. D., & Jahnke, L. S. (2008). Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: Fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). Journal of Experimental Marine Biology and Ecology, 361(2), 83–91.

    Google Scholar 

  • Santos-Sanchez, N., Valadez-Blanco, R., Hernandez-Carlos, B., Torres-Arino, A., Guadarrama-Mendoza, P., & Salas-Coronado, R. (2016). Lipids rich in ω-3 polyunsaturated fatty acids from microalgae. Applied Microbiology and Biotechnology, 100(20), 8667–8684.

    Article  CAS  PubMed  Google Scholar 

  • Sheikhzadeh, N., Tayefi-Nasrabadi, H., Oushani, A. K., & Enferadi, M. H. (2012). Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry, 38(2), 413–419.

    Google Scholar 

  • Simpore, J., Kabore, F., Zongo, F., Dansou, D., Bere, A., Pignatelli, S., Biondi, D. M., Ruberto, G., & Musumeci, S. (2006). Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutrition Journal, 5(1), 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skjånes, K., Rebours, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology, 33(2), 172–215.

    Article  PubMed  CAS  Google Scholar 

  • Smit, A. J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology, 16(4), 245–262.

    Article  CAS  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., Hosokawa, M., Kasajima, H., Hatanaka, K., Kudo, K., Shimoyama, N., & Miyashita, K. (2015). Anticancer effects of fucoxanthin and fucoxanthinol on colorectal cancer cell lines and colorectal cancer tissues. Oncology Letters, 10(3), 1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talero, E., García-Mauriño, S., Ávila-Román, J., Rodríguez-Luna, A., Alcaide, A., & Motilva, V. (2015). Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Marine Drugs, 13(10), 6152–6209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Durán, P. V., Ferreira-Hermosillo, A., Ramos-Jiménez, A., Hernández-Torres, R. P., & Juárez-Oropeza, M. A. (2012). Effect of Spirulina maxima on postprandial lipemia in young runners: A preliminary report. Journal of Medicinal Food, 15(8), 753–757.

    Google Scholar 

  • Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science & Technology, 36(2), 137–143.

    Article  CAS  Google Scholar 

  • Varfolomeev, S., & Wasserman, L. (2011). Microalgae as source of biofuel, food, fodder, and medicines. Applied Biochemistry and Microbiology, 47(9), 789–807.

    Article  CAS  Google Scholar 

  • Vigani, M., Parisi, C., Rodríguez-Cerezo, E., Barbosa, M. J., Sijtsma, L., Ploeg, M., & Enzing, C. (2015). Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends in Food Science & Technology, 42(1), 81–92.

    Article  CAS  Google Scholar 

  • Villar, R., Laguna, M., Calleja, J., & Cadavid, I. (1992). Effects of Skeletonema costatum extracts on the central nervous system. Planta Medica, 58(05), 398–404.

    Google Scholar 

  • Wang, H.-M. D., Chen, C.-C., Huynh, P., & Chang, J.-S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355–362.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., & Zhang, X. (2013). Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnology Progress, 29(3), 681–687.

    Google Scholar 

  • Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A., & Kawano, S. (2013). Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One, 8(1), e53618.

    Google Scholar 

  • WHO. (2016). World health statistics 2016: Monitoring health for the SDGs sustainable development goals. Washington, DC: Author.

    Google Scholar 

  • Witvrouw, M., & De, C. E. (1997). Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. General Pharmacology, 29(4), 497–511.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L.-C., Ho, J.-A. A., Shieh, M.-C., & Lu, I.-W. (2005). Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. Journal of Agricultural and Food Chemistry, 53(10), 4207–4212.

    Google Scholar 

  • Yukino, T., Hayashi, M., Inoue, Y., Imamura, J., Nagano, N., & Murata, H. (2005). Preparation of docosahexaenoic acid fortified Spirulina platensis and its lipid and fatty acid compositions. Nippon Suisan Gakkaishi, 71(1), 74–79.

    Google Scholar 

  • Zhao, L., Wang, J., Zhang, P., Gu, Q., & Gao, C. (2018). Absorption of heavy metal ions by alginate. In Bioactive seaweeds for food applications (pp. 255–268). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Zheng, L.-H., Wang, Y.-J., Sheng, J., Wang, F., Zheng, Y., Lin, X.-K., & Sun, M. (2011). Antitumor peptides from marine organisms. Marine Drugs, 9(10), 1840–1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, L., Hiltunen, E., Antila, E., Zhong, J., Yuan, Z., & Wang, Z. (2014). Microalgal biofuels: Flexible bioenergies for sustainable development. Renewable and Sustainable Energy Reviews, 30, 1035–1046.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (21978120; 21506084), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Training Project of the Young Core Instructor of Jiangsu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhao Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basheer, S. et al. (2020). Microalgae in Human Health and Medicine. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_5

Download citation

Publish with us

Policies and ethics