Skip to main content

Microalgae as a Mainstream Food Ingredient: Demand and Supply Perspective

  • Chapter
  • First Online:

Abstract

The value of future market of microalgae for food can be in billions of dollars, currently with microalgae-based nutritional supplement products such as Spirulina, Chlorella Euglena power or tablet and astaxanthin from Haematococcus pluvialis, already available on the shelves of selected stores in various parts of the world. Although microalgae have potential to further become mainstream food ingredients, they are facing many challenges before they are accepted as part of regular meals. In this chapter, various nutritional values of microalgae, such as protein, lipids, and vitamins, are examined in detail from the perspective of food application. The topic is a diverse one. While we focus on the inherent nutritional values from algae to demonstrate their suitability for the daily consumption, we also concurrently look through the lens of cultivation technology and biotechnology, as well as through analysis of bioavailability, in attempt to make clear path towards the goal of algae production. Demand analysis is made subsequently from functional aspect of microalgae and the derivatives as sources of food colorants and consumer segments where vegetarian and elder population are likely the earlier beneficiaries. Throughout the chapter, examples of microalgae-containing products are given at selected markets, highlighting the regional characteristics with a proper emphasis on nutritional values. Only with the suitable positioning of the values of algae in the target consumers and enabling of various technologies can microalgae become a significant part of the mainstream food ingredient market.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abalde, J., Fabregas, J., & Herrer, C. (1991). β-Carotene, vitamin C and vitamin E content of the marine microalga Dunaliella tertiolecta cultured with different nitrogen sources. Bioresource Technology, 38(2–3), 121–125.

    Article  CAS  Google Scholar 

  • Abd El-Hack, M. E., Abdelnour, S., Alagawany, M., Abdo, M., Sakr, M. A., Khafaga, A. F., Mahgoub, S. A., Elnesr, S. S., & Gebriel, M. G. (2019). Microalgae in modern cancer therapy: Current knowledge. Biomedicine & Pharmacotherapy, 111, 42–50.

    Article  CAS  Google Scholar 

  • Abduqader, G., Barsanti, L., & Tredici, M. R. (2000). Harvesting of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. Journal of Applied Phycology, 12, 493–498.

    Article  Google Scholar 

  • Adamczyk, M., Lasek, J., & Skawinska, A. (2016). CO2 biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Applied Biochemistry and Biotechnology, 179(7), 1248–1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aherne, G. W., Hardcastle, A., Valenti, M., Bryant, A., Rogers, P., Pettit, G. R., Srirangam, J. K., & Kelland, L. R. (1996). Anti-tumour evaluation of dolastatins 10 and 15 and their measurement in plasma by radioimmunoassay. Cancer Chemotherapy and Pharmacology, 38(3), 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Alam, M. A., & Wang, Z. (Eds.). (2019). Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 1–655). Singapore: Springer.

    Google Scholar 

  • Allès, B., Baudry, J., Méjean, C., Touvier, M., Péneau, S., Hercberg, S., & Kesse-Guyot, E. (2017). Comparison of sociodemographic and nutritional characteristics between self-reported vegetarians, vegans, and meat-eaters from the NutriNet-Santé study. Nutrients, 9(9), 1023.

    Article  PubMed Central  CAS  Google Scholar 

  • Alsenanai, F., et al. (2015). Nutraceuticals from microalgae: Nutraceuticals and functional foods in human health and disease prevention. St Lucia, QLD: University of Queensland.

    Book  Google Scholar 

  • Arbex, A. K., et al. (2015). The impact of fatty acid to human health. Journal of Endocrine and Metabolic Diseases, 2015(5), 98–104.

    Article  CAS  Google Scholar 

  • Babu, B. R., Rastogi, N. K., & Raghavarao, M. S. (2006). Mass transfer in osmotic membrane distillation of phycocyanin colourant and sweet lime juice. Journal of Membrane Science, 212, 58–69.

    Article  CAS  Google Scholar 

  • Barba, F. J. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5, 58.

    Article  CAS  Google Scholar 

  • Becker, W. (2004). The nutritional value of microalgae for aquaculture. In A. Richmond (Ed.), Microalgae for aquaculture. Handbook of microalgal culture (pp. 380–391). Oxford: Blackwell.

    Google Scholar 

  • Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210.

    Article  CAS  PubMed  Google Scholar 

  • Begum, H., Yusoff, F. M. D., Banerjee, S., Khatoon, H., & Shariff, M. (2015). Availability and utilization of pigments from microalgae. Critical Review in Food Science and Nutrition, 56(13), 2209–2222.

    Article  CAS  Google Scholar 

  • Ben-Amotz, A., Gressel, J., & Avron, M. (1987). Massive accumulation of phytoene induced by norflurazon in Dunaliella bardawil (chlorophyceae) prevents recovery from photoinhibition. Journal of Phycology, 23, 176–181.

    Article  CAS  Google Scholar 

  • BGG. (2016). Health benefits and production methods of natural astaxanthin. bggworld.com

  • Bleakley, S., & Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Food, 6, 33.

    Article  CAS  Google Scholar 

  • Borowitzka, M. (2013). High-value products from microalgae—Their development and commercialization. Journal of Applied Phycology, 25(3).

    Article  CAS  Google Scholar 

  • Brown, M., Mular, M., Miller, I., et al. (1999). The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology, 11(3), 247–255.

    Article  CAS  Google Scholar 

  • Brown, M. R., Jeffrey, S. W., Volkman, J. K., et al. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.

    Article  CAS  Google Scholar 

  • Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontier in Nutrition, 5, 58.

    Article  CAS  Google Scholar 

  • Carballo-Cárdenas, E. C., Tuan, P. M., Janssen, M., & Wijffels, R. H. (2003). Vitamin E (alpha-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomolecular Engineering, 20(4–6), 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 13(2), 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Central Africa. (2015). http://news.algaeworld.org/2015/04/nuns-growing-spirulina-in-central-african-republic-to-fight-malnutrition-with-ingenuity/

  • Chen, Z., Wang, L., Qiu, S., & Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. Bio-Medical Research International, 2018, 17.

    Google Scholar 

  • Chronakis, I. S., & Madsen, M. (2011). Algal proteins, handbook of food proteins. In G. O. Phillips & P. A. Williams (Eds.), Woodhead publishing series in food sciences, technology and nutrition (pp. 353–394).

    Google Scholar 

  • Cohen, G., Riahi, Y., & Sasson, S. (2011). Lipid peroxidation of poly-unsaturated fatty acids in normal and obese adipose tissues. Arch Physiology Bio-chemistry, 117(3), 131–139.

    Article  CAS  Google Scholar 

  • Craddock, J. C., Neale, E. P., Probst, Y. C., & Peoples, G. E. (2017). Algal supplementation of vegetarian eating patterns improves plasma and serum docosahexaenoic acid concentration and omega-3 indices: A systematic literature review. Journal of Human Nutrition and Dietetics., 30, 693–699.

    Article  CAS  PubMed  Google Scholar 

  • Craig, W. J. (2010). Nutrition concerns and health effects of vegetarian diets. Nutrition in Clinical Practice., 25(6), 613–620.

    Article  PubMed  Google Scholar 

  • Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J., & Smith, A. G. (2005). Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438(7046), 90–93.

    Article  CAS  PubMed  Google Scholar 

  • Croft, M. T., Warren, M. J., & Smith, A. G. (2006). Algae need their vitamins. Eukaryote Cell, 5(8), 1175–1183.

    Article  CAS  Google Scholar 

  • Digs, C. (2013). http://charliesdigs.blogspot.com/2013/07/spirulina-aztec-food-supplement.html

  • Doughman, S. D., Krupanidhi, S., & Sanjeev, C. B. (2007). Omega-3 fatty acids for nutrition and medicine: Considering microalgae oil as a vegetarian source of EPA and DHA. Current Diabetes Review, 3(3), 198–203.

    Article  CAS  Google Scholar 

  • Farag, I., & Price, K. (2013). Resources conservation in microalgae biodiesel production. International Journal of Engineering and Technical Research, 1, 49–56.

    Google Scholar 

  • Fabregas, J., & Herrero, C. (1990). Vitamin content of four marine microalgae. Potential use as a source of vitamins in nutrition. Journal of Industrial Microbiology, 5(4), 259–263.

    Article  CAS  Google Scholar 

  • Falaise, C., et al. (2016). Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine Drugs, 14(9), 159.

    Article  PubMed Central  CAS  Google Scholar 

  • Feenstra, W. J. (n.d.). Biochemical genetics of thiamine biosynthesis. https://www.arabidopsis.org/ais/1965/fees-1965-aaglt.html

  • Fixsen, M. A., & Jackson, H. M. (1932). The biological values of proteins: A further note on the method used to measure the nitrogenous exchange of rats. The Biochemical Journal, 26(6), 1919–1922.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner, M. L. (1988). Gastrointestinal absorption of intact proteins. Annual Review of Nutrition, 8, 329–350.

    Article  CAS  PubMed  Google Scholar 

  • Gorelova, V., Bastien, O., De Clerck, O., Lespinats, S., Rébeillé, F., & Van der Straeten, D. (2019). Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Nature, 9, 5731.

    CAS  Google Scholar 

  • Gouveia, L., et al. (2007). Chlorella vulgaris biomass used as coloring source in traditional butter cookies. Innovative Food Science & Emerging Technologies., 8, 433–436.

    Article  CAS  Google Scholar 

  • Grebow, J. (2019). Plant products need to target flexitarians. Nutritional Outlook.

    Google Scholar 

  • Gurpreet, K., Khattar, J. I. S., Singh, D. P., Yadvinder, S., & Jeevesh, N. (2009). Microalgae: A source of natural colours (pp. 129–150). New Delhi: I. K. International Publishing House.

    Google Scholar 

  • Gutiérrez-Salmeán, G., Fabila-Castillo, L., & Chamorro-Cevallos, G. (2015). Nutritional and toxicological aspects of Spirulina (arthrospira). Nutricion Hospitalaria, 32(1), 34–40.

    Google Scholar 

  • Hasegawa, T., Matsuguchi, T., Noda, K., Tanaka, K., Kumamoto, S., Shoyama, Y., & Yoshikai, Y. (2002). Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from chlorella vulgaris. International Immuno-pharmacology, 2(4), 579–589.

    Article  CAS  Google Scholar 

  • Hoffman, J. R., & Falvo, M. J. (2004). Protein—Which is best? Journal of Sports Science and Medicine, 3(3), 118–130.

    PubMed  PubMed Central  Google Scholar 

  • Islam, M. N., Alsenanai, F., & Schenk, P. M. (2017). Microalgae as a sustainable source of nutraceuticals, chapter 1. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • Ji, X. J., et al. (2015). Omega-3 biotechnology: A green and sustainable process for omega-3 fatty acids production. Frontier of Bioengineering and Biotechnology, 3, 158.

    Google Scholar 

  • Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D. T., & Show, P. L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16–24.

    Article  Google Scholar 

  • Li-Beisson, Y., Nakamura, Y., & Harwood, J. (2016). Lipids: From chemical structures, biosynthesis, and analyses to industrial applications. Subcell Biochemistry, 86, 1–18.

    Article  CAS  Google Scholar 

  • Liu, X., Wu, F., Ji, Y., & Yin, L. (2019). Recent advances in anti-cancer protein/peptide delivery. Bioconjugate Chemistry, 30(2), 305–324.

    Article  PubMed  CAS  Google Scholar 

  • Ma, X. N., et al. (2016). Lipid production from Nannochloropsis. Marine Drugs, 14(4), pii: E61.

    Article  CAS  Google Scholar 

  • Marrion, O., Schwertz, A., Fleurence, J., Guéant, J. L., & Villaume, C. (2003). Improvement of the digestibility of the proteins of the red alga palmaria palmata by physical processes and fermentation. Nahrung, 47(5), 339–344.

    Article  CAS  PubMed  Google Scholar 

  • Martins, D. A., et al. (2013). Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Marine Drugs, 11(7), 2259–2281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matondo, F. K., et al. (2016). Spirulina supplements improved the nutritional status of undernourished children quickly and significantly: Experience from Kisantu, the Democratic Republic of the Congo. International Journal Of Pediatrics, 2016, 1296414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matos, Â. P. (2017). The impact of microalgae in food science and technology. Journal of the American Oil Chemists’ Society, 94(11), 1333–1350.

    Article  CAS  Google Scholar 

  • Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17, 471–489.

    Google Scholar 

  • Meynier, A., & Genot, C. (2017). Molecular and structural organization of lipids in foods: Their fate during digestion and impact in nutrition. OCL, 24(2), D202.

    Article  Google Scholar 

  • Miller, M., et al. (2011). Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation, 123(20), 2292–2333.

    Article  PubMed  Google Scholar 

  • Nakayama, H. (1991). Method of disrupting the chlorella cell wall by cell rupture. U.S. patent no. 5330913.

    Google Scholar 

  • Pratt, R., & Johnson, E. (1966). Production of pantothenic acid and inositol by Chlorella vulgaris and C. pyrenoidosa. Journal of Pharmaceutical Sciences, 55(8), 799–802.

    Google Scholar 

  • Narinder, K., Vishal, C., & Anil K., G. (2014). Essential fatty acids as functional components of foods—A review. Journal of Food Science and Technology, 51(10), 2289–2303.

    Article  CAS  Google Scholar 

  • Raja, R., Anbazhagan, C., Ganesan, V., et al. (2004). Efficacy of Dunaliella salina (volvocales chlorophyta) in salt refinery effluent treatment. Asian Journal of Chemistry, 16, 1081–1088.

    CAS  Google Scholar 

  • Roy, S. S., & Pal, R. (2015). Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics. Proceedings of the Zoological Society, 68(1), 1–8.

    Article  Google Scholar 

  • Samarakoon, K., & Jeon, Y. (2012). Bio-functionalities of proteins derived from marine algae—A review. Food Research International, 48(2), 948–960.

    Article  CAS  Google Scholar 

  • Santiago-Santos, M. C., Ponce-Noyola, T., Olivera-Ramirez, R., Ortega-Lopez, J., & Canizares-Villanueva, R. O. (2004). Extraction and purification of phycocyanin from Calothrix sp. Process Biochemistry, 39(12), 2047–2052.

    Article  CAS  Google Scholar 

  • Sansone, C., & Brunet, C. (2019). Promises and challenges of microalgal antioxidant production. Antioxidants, 8, 199.

    Article  CAS  PubMed Central  Google Scholar 

  • Sathasiran, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. A. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Science, 26(4), 709–722.

    Article  CAS  Google Scholar 

  • Sekar, S., & Chandramohan, M. (2008). Phycobiliproteins as a commodity: Trends in applied research, patents and commercialization. Journal of Applied Phycology, 20, 113–136.

    Article  Google Scholar 

  • Skulas-Ray, A. C., et al. (2011). Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. The American Journal of Clinical Nutrition, 93(2), 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Smetana, S., Sandmann, M., Rohn, S., Pleissner, D., & Heinz, V. (2017). Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: Life cycle assessment. Bioresources Technology, 245(Pt A), 162–170.

    Article  CAS  Google Scholar 

  • Soeder, C. J., & Pabst, W. (1970). Massive cultivation of microalgae: Results and prospects. Chem: Springer.

    Google Scholar 

  • Soletto, D., Binaghi, L., Lodi, A., Carvalho, J. C. M., & Converti, A. (2005). Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture, 243(1), 217–224.

    Google Scholar 

  • Sun, X. M., et al. (2018). Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnology for Biofuels, 2018(11), 272.

    Article  CAS  Google Scholar 

  • Tandon, P., Jin, Q., & Huang, L. (2017). A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microbial Cell Factories, 16(1), 219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang, G., & Suter, P. M. (2011). Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella. Journal of Pharmacy and Nutrition Sciences, 1, 111–118.

    Article  CAS  Google Scholar 

  • Tani, Y. (1989). Algal and microbial production of vitamin E. Biotechnology of Vitamins, Pigments and Growth Factors, 1989, 95–104.

    Google Scholar 

  • Tarento, T. D. C., McClure, D. D., Vasiljevski, E., Schindeler, A., Dehghani, F., & Kavanagh, J. M. (2018). Microalgae as a source of vitamin K1. Algal Research, 36, 77–87.

    Article  Google Scholar 

  • The Food and Drug Administration. (2019). The FDA recommendation of suggested daily vitamin value. https://www.accessdata.fda.gov/scripts/InteractiveNutritionFactsLabel/factsheets/Vitamin_and_Mineral_Chart.pdf

  • Transparent. (2018). www.transparencymarketresearch.com/pressrelease/global-nutraceuticals-product-market.htm

  • van der Wielen, N., Moughan, P. J., & Mensink, M. (2017). Amino acid absorption in the large intestine of humans and porcine models. The Journal of Nutrition, 147(8), 1493–1498.

    Article  PubMed  CAS  Google Scholar 

  • van Krimpen, M. M., Bikker, P., van der Meer, I. M., van der Peet-Schwering, C. M. C., Vereijken, J. M. (2013). Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products, Wageningen UR Livestock Research Report 662.

    Google Scholar 

  • Vernass, W. F. J. (2004). Targeted genetic modification of cyanobacteria: New biotechnological applications. In A. Richmond (Ed.), Handbook of microalgal culture: Biotechnology and applied phycology (pp. 312–351). Bodwin, Cornwall: Blackwell Science MPG Books.

    Google Scholar 

  • Watanabe, F., Takenaka, S., Kittaka-Katsura, H., Ebara, S., & Miyamoto, E. (2002). Characterization and bioavailability of vitamin B12-compounds from edible algae. Journal of Nutritional Science and Vitaminology, 48, 325–331.

    Article  CAS  PubMed  Google Scholar 

  • WHO/FAO/UNU Expert Consultation. (2002). A joint report, protein and amino acid requirements in human nutrition, WHO technical report series 935. Geneva: United Nations University, World Health Organization.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Hong Kong Innovation and Technology Commission (ITC) for the support of three of the authors through Post-Doctoral Hub Program PsH/045/19 and Research Program IsP/210/18 & IsP/153/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, A. et al. (2020). Microalgae as a Mainstream Food Ingredient: Demand and Supply Perspective. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_2

Download citation

Publish with us

Policies and ethics