Skip to main content

Microalgae Biomass Production: An Overview of Dynamic Operational Methods

  • Chapter
  • First Online:

Abstract

Microalgae biomass is a promising and sustainable feedstock with wide range of applications for biofuel, cosmetics, pharmaceutical, functional foods, aquaculture, and nutraceutical. The production scheme for microalgae products comprises several stages of processing. It starts with microalgal strain development and cultivation, followed by microalgal biomass harvesting or separation from the culture media and consequent thickening, dewatering, drying, and target product extraction. Efficient and cost-effective harvesting and drying approaches severely affect the overall energy consumption and production cost of microalgal-based products in a large scale. There are plenty of reviews and research articles available on various cultures and harvesting technologies of microalgae biomass generation. However very few articles are available on the drying and storage methods of biomass. Thus, in this chapter we provide a short overview of strain selection, cultivation, and harvesting, with additional importance in drying and storage advancement along with the advantages and disadvantages of various methods documented till now.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed, F., Yan, L., Fanning, K., Netzel, M., & Schenk, P. M. (2015). Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis. Food Research International, 74, 231–236.

    Google Scholar 

  • Alam, M. A., Wan, C., Guo, S.-L., Zhao, X.-Q., Huang, Z.-Y., Yang, Y.-L., Chang, J.-S., & Bai, F.-W. (2014). Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. Journal of Bioscience and Bioengineering, 118(1), 29–33.

    Google Scholar 

  • Alam, M. A., & Wang, Z. (Eds.). (2019). Microalgae biotechnology for development of biofuel and wastewater treatment. Singapore: Springer.

    Google Scholar 

  • Alam, M. A., Wang, Z., & Yuan, Z. (2017). Generation and harvesting of microalgae biomass for biofuel production. Prospects and challenges in algal biotechnology (pp. 89–111). Singapore: Springer.

    Google Scholar 

  • Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews, 14(2), 557–577.

    Article  CAS  Google Scholar 

  • Bux, F. (2013). Biotechnological applications of microalgae. International e-Journal of Science, Medicine & Education, 6(Suppl 1), S24–S37.

    Google Scholar 

  • Chatsungnoen, T., & Chisti, Y. (2016). Oil production by six microalgae: Impact of flocculants and drying on oil recovery from the biomass. Journal of Applied Phycology, 28(5), 2697–2705.

    Article  CAS  Google Scholar 

  • Chen, C.-L., Chang, J.-S., & Lee, D.-J. (2015). Dewatering and drying methods for microalgae. Drying Technology, 33, 443.

    Article  CAS  Google Scholar 

  • Chew, K. W., Jing, Y. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D. J., & Chang, J. S. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.-A., Oh, Y.-K., Lee, J., Sim, S. J., Hong, M. E., Park, J.-Y., Kim, M.-S., Kim, S. W., & Lee, J.-S. (2019). High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures. Bioresource Technology, 274, 120–126.

    Google Scholar 

  • Chun-Yen, C., Kuei-Ling, Y., Rifka, A., Duu-Jong, L., & Jo-Shu, C. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81.

    Article  CAS  Google Scholar 

  • Coleman, A. M., Abodeely, J. M., Skaggs, R. L., Moeglein, W. A., Newby, D. T., Venteris, E. R., & Wigmosta, M. S. (2014). An integrated assessment of location-dependent scaling for microalgae biofuel production facilities. Algal Research, 5(1), 79–94.

    Article  Google Scholar 

  • Desmorieux, H., & Hernandez, F. (2004). Biochemical and physical criteria of Spirulina after different drying processes. In Proceedings of the 14th international drying symposium (IDS 2004), Sào Paulo, 22–25 August 2004 (pp. 900–907).

    Google Scholar 

  • Garg, S., Li, Y., Wang, L., & Schenk, P. M. (2012). Flotation of marine microalgae: Effect of algal hydrophobicity. Bioresource Technology, 121(10), 471–474.

    Article  CAS  PubMed  Google Scholar 

  • Granados, M. R., Acién, F. G., Gómez, C., Fernández-Sevilla, J. M., & Molina Grima, E. (2012). Evaluation of flocculants for the recovery of freshwater microalgae. Bioresource Technology, 118, 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Laamanen, C. A., Ross, G. M., & Scott, J. A. (2016). Flotation harvesting of microalgae. Renewable and Sustainable Energy Reviews, 58, 75–86.

    Article  Google Scholar 

  • Levine, I., & Fleurence, J. (2018). Microalgae in health and disease prevention. London: Academic Press.

    Google Scholar 

  • Li, D., Wang, L., Zhao, Q., Wei, W., & Sun, Y. (2015). Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresource Technology, 185, 269–275.

    Google Scholar 

  • Linden, J. C., Henk, L. L., Murphy, V. G., Smith, D. H., Gabrielsen, B. C., Tengerdy, R. P., & Czako, L. (2010). Preservation of potential fermentables in sweet sorghum by ensiling. Biotechnology and Bioengineering, 30(7), 860–867.

    Article  Google Scholar 

  • Mathimani, T., & Mallick, N. (2018). A comprehensive review on harvesting of microalgae for biodiesel – Key challenges and future directions. Renewable and Sustainable Energy Reviews, 91, 1103–1120.

    Article  CAS  Google Scholar 

  • Menegazzo, M. L., & Fonseca, G. G. (2019). Biomass recovery and lipid extraction processes for microalgae biofuels production: A review. Renewable and Sustainable Energy Reviews, 107, 87–107.

    Article  CAS  Google Scholar 

  • Mohn, F. H. (1978). Improved technologies for the harvesting and processing of microalgae and their impact on production costs. Archiv fur Hydrobiologie, Beihefte Ergebnisse der Limnologie, 1, 228–253.

    Google Scholar 

  • Moody, J. W., Mcginty, C. M., & Quinn, J. C. (2014). Global evaluation of biofuel potential from microalgae. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8691–8696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mubarak, M., Shaija, A., & Suchithra, T. V. (2019). Flocculation: An effective way to harvest microalgae for biodiesel production. Journal of Environmental Chemical Engineering, 7(4), 103221.

    Article  CAS  Google Scholar 

  • Oleskowicz-Popiel, P., Thomsen, A. B., & Schmidt, J. E. (2011). Ensiling – Wet-storage method for lignocellulosic biomass for bioethanol production. Biomass & Bioenergy, 35(5), 2087–2092.

    Article  CAS  Google Scholar 

  • Pierre, C., Arnaud, H., Laurent, L., Monique, R., Romy-Alice, G., & Jean-Philippe, S. (2011). Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 102(1), 207–214.

    Article  CAS  Google Scholar 

  • Poelman, E., De Pauw, N., & Jeurissen, B. (1997). Potential of electrolytic flocculation for recovery of micro-algae. Resources, Conservation and Recycling, 19(1), 1–10.

    Article  Google Scholar 

  • Pragya, N., Pandey, K. K., & Sahoo, P. K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable & Sustainable Energy Reviews, 24(10), 159–171.

    Article  CAS  Google Scholar 

  • Prakash, J., Pushparaj, B., Carlozzi, P., Torzillo, G., Montaini, E., & Materassi, R. (1997). Microalgal biomass drying by a simple solar device. International Journal of Solar Energy, 18, 303.

    Article  Google Scholar 

  • Raposo, M. F. J., Morais, A. M. M. B., & Rui, M. S. C. M. (2012). Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass. World Journal of Microbiology & Biotechnology, 28(3), 1253–1257.

    Google Scholar 

  • Rashid, N., Lee, B., & Chang, Y.-K. (2019). Recent trends in microalgae research for sustainable energy production and biorefinery applications. In Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 3–20).

    Google Scholar 

  • Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424.

    Article  CAS  Google Scholar 

  • Richmond, A. (1990). Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. Journal of Applied Phycology, 2(3), 195–206.

    Article  Google Scholar 

  • Roselet, F., Vandamme, D., Muylaert, K., & Abreu, P. (2019). Harvesting of microalgae for biomass production. In Microalgae biotechnology for development of biofuel and wastewater treatment, Alam M. A. and Wang Z. (eds.) (pp. 211–244). Singapore: Springer.

    Google Scholar 

  • Salim, S., Bosma, R., Vermuë, M. H., & Wijffels, R. H. (2011). Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 23(5), 849–855.

    Article  PubMed  Google Scholar 

  • Shinners, K., Wepner, A. D., Muck, R. E., & Weimer, P. J. (2011). Aerobic and anaerobic storage of single-pass, chopped corn stover. BioEnergy Research, 4(1), 61–75.

    Article  Google Scholar 

  • Shinners, K. J., Binversie, B. N., Muck, R. E., & Weimer, P. J. (2007). Comparison of wet and dry corn stover harvest and storage. Biomass & Bioenergy, 31(4), 211–221.

    Article  Google Scholar 

  • Shinners, K. J., Boettcher, G. C., Muck, R. E., Weimer, P. J., & Casler, M. D. (2010). Harvest and storage of two perennial grasses as biomass feedstocks. Transactions of the ASABE, 53(2), 359–370.

    Article  Google Scholar 

  • Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 102(1), 26–34.

    Article  CAS  PubMed  Google Scholar 

  • Tan, X., Man, K. L., Uemura, Y., Lim, J. W., Wong, C. Y., & Lee, K. T. (2018). Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing. Chinese Journal of Chemical Engineering, 26(1), 17–30. S1004954117304305.

    Article  CAS  Google Scholar 

  • Ummalyma, S. B., Gnansounou, E., Sukumaran, R. K., Sindhu, R., Pandey, A., & Sahoo, D. (2017). Bioflocculation: An alternative strategy for harvesting of microalgae – An overview. Bioresource Technology, 242, 227.

    Article  CAS  PubMed  Google Scholar 

  • Wan, C., Alam, M. A., Zhao, X. Q., Zhang, X. Y., Guo, S. L., Ho, S. H., Chang, J. S., & Bai, F. W. (2015). Current progress and future prospect of microalgal biomass harvest using various flocculation technologies: Biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies. Bioresource Technology, 184, 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Wan, C., Zhao, X. Q., Guo, S.-L., Alam, M. A., & Bai, F. W. (2013). Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresource Technology, 135, 207–212.

    Google Scholar 

  • Wendt, L. M., Wahlen, B. D., Li, C., Kachurin, G., Ogden, K. L., & Murphy, J. A. (2017). Evaluation of a high-moisture stabilization strategy for harvested microalgae blended with herbaceous biomass: Part I—Storage performance. Algal Research, 25, 567–575, S2211926416307664.

    Article  Google Scholar 

  • Wigmosta, M. S., Coleman, A. M., Skaggs, R. J., Huesemann, M. H., & Lane, L. J. (2011). National microalgae biofuel production potential and resource demand. Water Resources Research, 47(3), 289–306.

    Article  Google Scholar 

  • Xin, M., Yang, J. M., Xin, X., Lei, Z., Nie, Q. J., & Mo, X. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5.

    Article  CAS  Google Scholar 

  • Xu, L., Wang, F., Li, H.-Z., Hu, Z.-M., Guo, C., & Liu, C.-Z. (2010). Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. Journal of Chemical Technology & Biotechnology, 85(11), 1504–1507.

    CAS  Google Scholar 

  • Yen, H. W., Hu, I. C., Chen, C. Y., Ho, S. H., Lee, D. J., & Chang, J. S. (2013). Microalgae-based biorefinery – From biofuels to natural products. Bioresource Technology, 135(2), 166–174.

    Article  CAS  PubMed  Google Scholar 

  • Yew, G. Y., Lee, S. Y., Show, P. L., Tao, Y., Law, C. L., Nguyen, T. T. C., & Chang, J.-S. (2019). Recent advances in algae biodiesel production: From upstream cultivation to downstream processing. Bioresource Technology Reports, 7, 100227.

    Article  Google Scholar 

  • Yu, S., Zhao, Q., Miao, X., & Shi, J. (2013). Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresource Technology, 147(7), 499–507.

    Google Scholar 

  • Zeng, X., Danquah, M. K., Chen, X. D., & Lu, Y. (2011). Microalgae bioengineering: From CO2 fixation to biofuel production. Renewable & Sustainable Energy Reviews, 15(6), 3252–3260.

    Google Scholar 

  • Zheng, H., Gao, Z., Yin, J., Tang, X., Ji, X., & Huang, H. (2012). Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresource Technology, 112, 212–220.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Lai, Y. J. S., Eustance, E., Straka, L., & Rittmann, B. E. (2017). How myristyltrimethylammonium bromide enhances biomass harvesting and pigments extraction from Synechocystis sp. PCC 6803. Water Research, 126, 189–196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Liang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muhammad, G., Alam, M.A., Xiong, W., Lv, Y., Xu, JL. (2020). Microalgae Biomass Production: An Overview of Dynamic Operational Methods. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_13

Download citation

Publish with us

Policies and ethics