Skip to main content

Microalgae as Biofertilizer in Modern Agriculture

  • Chapter
  • First Online:
Microalgae Biotechnology for Food, Health and High Value Products

Abstract

Microalgae are a kind of widespread photosynthetic organisms including eukaryotic green algae and prokaryotic blue algae. They have great potential to be used as biological resources in the fields of medicine, health products, feed, fuel and so on. These fascinating organisms can also be used in modern agriculture for their ability to enrich soil nutrients and enhance utilization of macro and micronutrients. In addition to improving soil fertility and quality, microalgae can also produce plant growth hormones, polysaccharides, antimicrobial compounds and other metabolites to promote plant growth. This section focuses on the effects of cyanobacteria and green algae as biofertilizers on improving fertility and quality of soil and promoting plant growth. Recent research developments and future prospects of their application in modern agriculture are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed, R. M. M. (2010). Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. International Biodeterioration and Biodegradation, 64(1), 58–64.

    Article  CAS  Google Scholar 

  • Acea, M. (2003). Cyanobacterial inoculation of heated soils: Effect on microorganisms of C and N cycles and on chemical composition in soil surface. Soil Biology and Biochemistry, 35(4), 513–524.

    Article  CAS  Google Scholar 

  • Babu, S., Bidyarani, N., Chopra, P., et al. (2015). Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot challenged cotton crop. European Journal of Plant Pathology, 1(42), 345–362.

    Article  Google Scholar 

  • Biondi, N., Piccardi, R., Margheri, M. C., Rodolfi, L., Smith, G. D., & Tredici, M. R. (2004). Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Applied and Environmental Microbiology, 70(6), 3313–3320.

    Article  CAS  Google Scholar 

  • Chaillan, F., Gugger, M., Saliot, A., Coute, A., & Oudot, J. (2006). Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere, 62(10), 1574–1582.

    Article  CAS  Google Scholar 

  • Chaudhary, V., Prasanna, R., Nain, L., et al. (2012). Bioefficacy of novel cyanobacteria-amended formulations in suppressing damping off disease in tomato seedlings. World Journal of Microbiology and Biotechnology, 28(12), 3301–3310.

    Article  Google Scholar 

  • Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., & Eaton-Rye, J. J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Applied Energy, 88(10), 3454–3463.

    Article  CAS  Google Scholar 

  • Issa, A. A. (1999). Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environmental Toxicology and Pharmacology, 8(1), 33–37.

    Google Scholar 

  • Jha, M. N., & Prasad, A. N. (2006). Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf-life. World Journal of Microbiology and Biotechnology, 22(1), 73–79.

    Article  CAS  Google Scholar 

  • Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., & Kaushik, B. D. (2009). Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica, 54, 43–51.

    Article  CAS  Google Scholar 

  • Khan, Z., Park, S. D., Shin, S. Y., Bae, S. G., Yeon, I. K., & Seo, Y. J. (2005). Management of Meloidogyne incognita on tomato by root-dip treatment in culture filtrate of the bluegreen alga, Microcoleus vaginatus. Bioresource Technology, 96(12), 1338–1341.

    Google Scholar 

  • Kheirfam, H., Sadeghi, S. H., Zarei Darki, B., & Homaee, M. (2017). Controlling rainfall-induced soil loss from small experimental plots through inoculation of bacteria and cyanobacteria. Catena, 152, 40–46.

    Article  CAS  Google Scholar 

  • Koutra, E., Grammatikopoulos, G., & Kornaros, M. (2017). Microalgal post-treatment of anaerobically digested agro-industrial wastes for nutrient removal and lipids production. Bioresource Technology, 224, 473–480.

    Article  CAS  Google Scholar 

  • Krings, M., Hass, H., Kerp, H., Taylor, T. N., Agerer, R., & Dotzler, N. (2009). Endophytic cyanobacteria in a 400-million-yr-old land plant: a scenario for the origin of a symbiosis? Review of Palaeobotany and Palynology, 153(1-2), 62–69.

    Article  Google Scholar 

  • Kumar, M., Prasanna, R., Bidyarani, N., Babu, S., Mishra, B. K., Kumar, A., Adak, A., Jauhari, S., Yadav, K., Singh, R., & Saxena, A. K. (2013). Evaluating the plant growth promoting ability of thermotolerant bacteria and cyanobacteria and their interactions with seed spice crops. Scientia Horticulturae, 164, 94–101.

    Article  CAS  Google Scholar 

  • Malam Issa, O., Défarge, C., Le Bissonnais, Y., Marin, B., Duval, O., Bruand, A., D’Acqui, L. P., Nordenberg, S., & Annerman, M. (2007). Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and Soil, 290(1), 209–219.

    Google Scholar 

  • Mazhar, S., Cohen, J. D., & Hasnain, S. (2013). Auxin producing non-heterocystous cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. Journal of Basic Microbiology, 53, 996–1003.

    Article  CAS  Google Scholar 

  • Osman, M. E. H., El-Sheekh, M. M., El-Naggar, A. H., & Gheda, S. F. (2010). Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils, 46(8), 861–875.

    Article  Google Scholar 

  • Plastina, A. (2017). Estimated Costs of Crop Production in Iowa. Ag Decision Maker File A1-20.

    Google Scholar 

  • Priya, H., Prasanna, R., Ramakrishnan, B., et al. (2015). Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiological Research, 171, 78–89.

    Article  CAS  Google Scholar 

  • Renuka, N., Prasanna, R., Sood, A., et al. (2016). Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research, 23(7), 6608–6620.

    Article  CAS  Google Scholar 

  • Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: Current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255–1273.

    Article  CAS  Google Scholar 

  • Sadeghi, S. H., Kheirfam, H., Homaee, M., Darki, B. Z., & Vafakhah, M. (2017). Improving runoff behavior resulting from direct inoculation of soil micro-organisms. Soil and Tillage Research, 171, 35–41.

    Article  Google Scholar 

  • Singh, S., & Datta, P. (2007). Outdoor evaluation of herbicide resistant strains of Anabaena variabilis as biofertilizer for rice plants. Plant and Soil, 296(1-2), 95–102.

    Article  CAS  Google Scholar 

  • Subhashini, D., & Kaushik, B. (1981). Amelioration of sodic soils with blue-green algae. Soil Research, 19(3), 361–366.

    Article  Google Scholar 

  • Swarnalakshmi, K., Prasanna, R., Kumar, A., et al. (2013). Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. European Journal of Soil Biology, 55, 107–116.

    Article  Google Scholar 

  • Trejo, A., De-Bashan, L. E., Hartmann, A., et al. (2012). Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environmental and Experimental Botany, 75, 65–73.

    Article  Google Scholar 

  • Tripathi, R. D., Dwivedi, S., Shukla, M. K., Mishra, S., Srivastava, S., Singh, R., Rai, U. N., & Gupta, D. K. (2008). Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere, 70(10), 1919–1929.

    Article  CAS  Google Scholar 

  • Wuang, S. C., Khin, M. C., Chua, P. Q. D., et al. (2016). Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64.

    Article  Google Scholar 

  • Yilmaz, E., & Sönmez, M. (2017). The role of organic/bio-fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil and Tillage Research, 168, 118–124.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, S., Wang, P., Wang, X., Zou, M., Liu, C., Hao, J. (2020). Microalgae as Biofertilizer in Modern Agriculture. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_12

Download citation

Publish with us

Policies and ethics