Skip to main content

Microalgae as a Vaccine Delivery System to Aquatic Organisms

  • Chapter
  • First Online:
Microalgae Biotechnology for Food, Health and High Value Products

Abstract

Aquaculture is one of the fastest growing food producing sector, as global aquaculture produces about 65 million metric tons of seafood valued at more than US$78 billion annually and supplies 50% of all the fish consumed in the world (Turchini et al., Fish oil replacement and alternative lipid sources in aquaculture feeds, CRC Press, Boca Raton, FL, 2010). On top of that, the aquaculture industry displayed an annual percentage of growth rate (APR) of 9.4% compared to other food producing sectors such as pigs farming (3.1%), poultry (5.1%), beef (1.2%), and mutton and lamb (1.0%). The aquaculture sector, especially fish, contributed up to 17% of animal proteins consumed worldwide and can reach up to 50% in some countries. In 2002, it was reported that the total world aquaculture production was worth 60 billion USD by value. One of the major and primary constraints in the aquaculture system production is disease outbreaks. They could be caused by bacteria, viruses, parasites and fungi. In the catfish industry, a loss of up to 60–80 million USD was caused by pathogenic bacteria Edwardsiella ictaluri and Flavobacterium culumnare. Apart from that, it was reported that a 50–100 million Euro annual loss in the salmon industry is caused by parasitic lice. Many strategies have been attempted to gauge and control this situation, but there is still an urgent need for better alternatives and also to explore the potential use of genetically modified organisms instead of antibiotics and chemical control. In this chapter, we focus on the potential and application of transgenic microalgae on aquaculture, as it has been dubbed as the organism of the future in terms of its utility, flexibility and, most importantly, sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam, M. A., & Wang, Z. (Eds.). (2019). Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 1–655). Singapore: Springer.

    Google Scholar 

  • Álvarez, R., Vaz, B., Gronemeyer, H., & de Lera, A. R. (2014). Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chemical Reviews, 114(1), 1–125.

    Article  PubMed  CAS  Google Scholar 

  • Asad, S., & Arshad, M. (2011). Silicon carbide whisker-mediated plant transformation. In Properties and applications of silicon carbide (pp. 345–359). Rijeka: IntechOpen.

    Google Scholar 

  • Azim, N. H., Subki, A., & Yusof, Z. N. B. (2018). Abiotic stresses induce total phenolic, total flavonoid and antioxidant properties in Malaysian indigenous microalgae and cyanobacterium. Malaysian Journal of Microbiology, 14(1), 25–33.

    CAS  Google Scholar 

  • Ball, S. G. (2005). Eukaryotic microalgae genomics. The essence of being a plant. Plant Physiology, 137(2), 397–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjerkeng, B. (2008). Carotenoids in aquaculture: Fish and crustaceans. In Carotenoids (pp. 237–254). Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Blount, J. D., & McGraw, K. J. (2008). Signal functions of carotenoid colouration. In G. Britton, S. Liaaen-Jensen, & H. Pfander (Eds.), Carotenoids: Vol. 4: Natural functions (pp. 213–236). Basel: Birkhäuser.

    Google Scholar 

  • Brown, M. R. (2002). Nutritional value and use of microalgae in aquaculture. In: Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola, 3 (pp. 281–292).

    Google Scholar 

  • Brown, M. R., Mular, M., Miller, I., Farmer, C., & Trenerry, C. (1999). The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology, 11(3), 247–255.

    Article  CAS  Google Scholar 

  • Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnology Progress, 22(6), 1490–1506.

    Article  CAS  PubMed  Google Scholar 

  • Cha, T. S., Chen, C. F., Yee, W., Aziz, A., & Loh, S. H. (2011). Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. Journal of Microbiological Methods, 84(3), 430–434.

    Article  CAS  PubMed  Google Scholar 

  • Chai, X. J., Chen, H. X., Xu, W. Q., & Xu, Y. W. (2013). Expression of soybean Kunitz trypsin inhibitor gene SKTI in Dunaliellasalina. Journal of Applied Phycology, 25(1), 139–144.

    Article  CAS  Google Scholar 

  • Chen, H. L., Li, S. S., Huang, R., & Tsai, H. J. (2008). Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae) 1. Journal of Phycology, 44(3), 768–776.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, R., Ma, R., Li, K., Rong, H., Lin, X., Wang, Z., Yang, S., & Ma, Y. (2012). Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiological Research, 167(3), 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Chow, K. C., & Tung, W. L. (1999). Electrotransformation of Chlorella vulgaris. Plant Cell Reports, 18(9), 778–780.

    Google Scholar 

  • Chu, K. H., Qi, J., Yu, Z. G., & Anh, V. O. (2004). Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. Molecular Biology and Evolution, 21(1), 200–206.

    Article  CAS  PubMed  Google Scholar 

  • Coll, J. M. (2006). Methodologies for transferring DNA into eukaryotic microalgae: A review. Spanish Journal of Agricultural Research, 4(4), 316–330.

    Article  Google Scholar 

  • Corchero, J. L., Gasser, B., Resina, D., Smith, W., Parrilli, E., Vázquez, F., Abasolo, I., Giuliani, M., Jäntti, J., Ferrer, P., & Saloheimo, M. (2013). Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnology Advances, 31(2), 140–153.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo, M. C., & Fox, T. D. (1988). Transformation of yeast by agitation with glass beads. Genetics, 120(3), 667–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couso, I., Vila, M., Rodriguez, H., Vargas, M. A., & Leon, R. (2011). Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnology Progress, 27(1), 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Jiang, P., Wang, J., Li, F., Chen, Y., Zheng, G., & Qin, S. (2012). Genetic transformation of Platymonas (Tetraselmis) subcordiformis (Prasinophyceae, Chlorophyta) using particle bombardment and glass bead agitation. Chinese Journal of Oceanology and Limnology, 30(3), 471–475.

    Article  CAS  Google Scholar 

  • Cutzu, R., Coi, A., Rosso, F., Bardi, L., Ciani, M., Budroni, M., Zara, G., Zara, S., & Mannazzu, I. (2013). From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World Journal of Microbiology and Biotechnology, 29(6), 1009–1017.

    Google Scholar 

  • Dehesh, K., Tai, H., Edwards, P., Byrne, J., & Jaworski, J. G. (2001). Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiology, 125(2), 1103–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demain, A. L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27, 297–306.

    Article  CAS  PubMed  Google Scholar 

  • Dong, B., Cheng, R. Q., Liu, Q. Y., Wang, J., & Fan, Z. C. (2018). Multimer of the antimicrobial peptide Mytichitin-A expressed in Chlamydomonas reinhardtii exerts a broader antibacterial spectrum and increased potency. Journal of Bioscience and Bioengineering, 125(2), 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Doron, L., Segal, N. A., & Shapira, M. (2016). Transgene expression in microalgae from tools to applications. Frontiers in Plant Science, 7, 505.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S., Zauner, S., Fraunholz, M., Beaton, M., Penny, S., Deng, L. T., Wu, X., Reith, M., Cavalier-Smith, T., & Maier, U. G. (2001). The highly reduced genome of an enslaved algal nucleus. Nature, 410(6832), 1091.

    Article  CAS  PubMed  Google Scholar 

  • Dunahay, T. G. (1993). Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechnology Techniques, 15(3), 452–460.

    CAS  Google Scholar 

  • Ebenezer, V., Medlin, L. K., & Kei, J. S. (2012). Molecular detection, quantification, and diversity evaluation of microalgae. Marine Biotechnology, 14(2), 129–142.

    Article  CAS  PubMed  Google Scholar 

  • Endo, H., Yoshida, M., Uji, T., Saga, N., Inoue, K., & Nagasawa, H. (2016). Stable nuclear transformation system for the Coccolithophorid alga Pleurochrysis carterae. Scientific Reports, 6, 22252.

    Google Scholar 

  • Feng, S., Feng, W., Zhao, L., Gu, H., Li, Q., Shi, K., Guo, S., & Zhang, N. (2014). Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Archives of Virology, 159(3), 519–525.

    Google Scholar 

  • Fern, L. L., Abidin, A. A. Z., & Yusof, Z. N. B. (2017). Upregulation of thiamine (vitamin B1) biosynthesis gene upon stress application in Anabaena sp. and Nannochloropsis oculata. Journal of Plant Biotechnology, 44(4), 462–471.

    Article  Google Scholar 

  • Ferrer-Miralles, N., & Villaverde, A. (2013). Bacterial cell factories for recombinant protein production; expanding the catalogue. Microbial Cell Factories, 12, 113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fincham, J. R. (1989). Transformation in fungi. Microbiological Reviews, 53(1), 148–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flegel, T. W., Lightner, D. V., Lo, C. F., & Owens, L. (2008). Shrimp disease control: Past, present and future. In Diseases in Asian aquaculture VI (pp. 355–378). Manila, Philippines: Fish Health Section, Asian Fisheries Society.

    Google Scholar 

  • Franconi, R., Demurtas, O. C., & Massa, S. (2010). Plant-derived vaccines and other therapeutics produced in contained systems. Expert Review of Vaccines, 9, 877–892.

    Article  CAS  PubMed  Google Scholar 

  • Gangl, D., Zedler, J. A. Z., Rajakumar, P. D., Martinez, E. M. R., Riseley, A., & Włodarczyk, A. (2015). Biotechnological exploitation of microalgae. Journal of Experimental Botany, 66(22), 6975–6990.

    Article  CAS  PubMed  Google Scholar 

  • Gatlin, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, G. T., Hardy, R. W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., Souza, E. J., Stone, D., Wilson, R., & Wurtele, E. (2007). Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquaculture Research, 38, 551–579.

    Article  CAS  Google Scholar 

  • Georgianna, D. R., Hannon, M. J., Marcuschi, M., Wu, S., Botsch, K., Lewis, A. J., Hyun, J., Mendez, M., & Mayfield, S. P. (2013). Production of recombinant enzymes in the marine alga Dunaliellatertiolecta. Algal Research, 2(1), 2–9.

    Article  Google Scholar 

  • Glöckner, G., Rosenthal, A., & Valentin, K. (2000). The structure and gene repertoire of an ancient red algal plastid genome. Journal of Molecular Evolution, 51(4), 382–390.

    Article  PubMed  Google Scholar 

  • Gong, Y., Hu, H., Gao, Y., Xu, X., & Gao, H. (2011). Microalgae as platforms for production of recombinant proteins and valuable compounds: Progress and prospects. Journal of Industrial Microbiology & Biotechnology, 38(12), 1879–1890.

    Article  CAS  Google Scholar 

  • Goodwin, T. W. (1984). The biochemistry of the carotenoids. Vol. 2: Animals (2nd ed.). London: Chapman and Hall.

    Book  Google Scholar 

  • Hallick, R. B., Hong, L., Drager, R. G., Favreau, M. R., Monfort, A., Orsat, B., Spielmann, A., & Stutz, E. (1993). Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Research, 21(15), 3537–3544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, D. M., Qian, K. X., Shen, G. F., Zhang, Z. F., Yi-Nü, L. I., Su, Z. L., & Shao, H. B. (2007). Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids and Surfaces B: Biointerfaces, 55(1), 26–30.

    Google Scholar 

  • He, Y., Peng, H., Liu, J., Chen, F., Zhou, Y., Ma, X., & Wang, K. (2018). Chlorella sp. transgenic with Scy-hepc enhancing the survival of Sparus macrocephalus and hybrid grouper challenged with Aeromonas hydrophila. Fish & Shellfish Immunology, 73, 22–29.

    Google Scholar 

  • Heiser, W. (1992). Optimization of biolistic transformation using the helium-driven PDS-1000/He system. BIO-RADUS/EG Bulletin 8–8.

    Google Scholar 

  • Hempel, F., Lau, J., Klingl, A., & Maier, U. G. (2011). Algae as protein factories: Expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One, 6(12), e28424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, Q., Qiu, S., Liu, Q., Tian, J., Hu, Z., & Ni, J. (2013). Selenoprotein-transgenic Chlamydomonas reinhardtii. Nutrients, 5(3), 624–636.

    Google Scholar 

  • Jackson, L. S., Li, M. H., & Robinson, E. H. (1996). Use of microbial phytase in channel catfish Ictalurus punctatus diets to improve utilization of phytate phosphorus 1. Journal of the World Aquaculture Society, 27(3), 309–313.

    Article  Google Scholar 

  • Kathiresan, S., Chandrashekar, A., Ravishankar, G. A., & Sarada, R. (2009). Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales) 1. Journal of Phycology, 45(3), 642–649.

    Google Scholar 

  • Kathiresan, S., Chandrashekar, A., Ravishankar, G. A., & Sarada, R. (2015). Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcuspluvialis. Journal of Biotechnology, 196–197, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. K., Kim, K. D., Seo, J. Y., & Lee, S. M. (2012). Effects of dietary lipid source and level on growth performance, blood parameters and flesh quality of sub-adult olive flounder (Paralichthys olivaceus). Asian-Australasian Journal of Animal Sciences, 25(6), 869.

    Google Scholar 

  • Kim, S., Lee, Y. C., Cho, D. H., Lee, H. U., Huh, Y. S., Kim, G. J., & Kim, H. S. (2014). A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii. PLoS One, 9(7), e101018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kindle, K. L., Schnell, R. A., Fernandez, E., & Lefebvre, P. A. (1989). Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. Journal of Cell Biology, 109(6), 2589–2601.

    Article  CAS  PubMed  Google Scholar 

  • Knauer, J., Barrett, S. M., Volkman, J. K., & Southgate, P. C. (1999). Assimilation of dietary phytosterols by Pacific oyster Crassostrea gigasspat. Aquaculture Nutrition, 5, 257–266.

    Article  CAS  Google Scholar 

  • Kumar, V., Sinha, A. K., Makkar, H. P. S., De Boeck, G., & Becker, K. (2012). Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition, 96(3), 335–364.

    Article  CAS  PubMed  Google Scholar 

  • Kuwano, T., Shirataki, C., & Itoh, Y. (2008). Comparison between polyethylene glycol- and polyethylenimine-mediated transformation of Aspergillus nidulans. Current Genetics, 54(2), 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Lardizabal, K. D., Thompson, G. A., & Hawkins, D. (2006). Diacylglycerol acyl transferase proteins. United States. Patent, & Trademark Office. Official Gazette of the United States Patent and Trademark Office: Patents (Vol. 1243, No. 3). US Department of Commerce, Patent and Trademark Office.

    Google Scholar 

  • Lau, C. C., Loh, S. H., Aziz, A., & Cha, T. S. (2017). Effects of disrupted omega-3 desaturase gene construct on fatty acid composition and expression of four fatty acid biosynthetic genes in transgenic Chlorella vulgaris. Algal Research, 26, 143–152.

    Article  Google Scholar 

  • Lee, Y. K. (1997). Commercial production of microalgae in the Asia-Pacific rim. Journal of Applied Phycology, 9(5), 403–411.

    Article  Google Scholar 

  • Lemieux, C., Otis, C., & Turmel, M. (2000). Ancestral chloroplast genome in Mesostigmaviride reveals an early branch of green plant evolution. Nature, 403(6770), 649.

    Article  CAS  PubMed  Google Scholar 

  • León, R., & Fernández, E. (2007). Nuclear transformation of eukaryotic microalgae: Historical overview, achievements and problems. Advances in Experimental Medicine and Biology, 616, 1–11.

    Article  PubMed  Google Scholar 

  • León-Bañares, R., González-Ballester, D., Galván, A., & Fernández, E. (2004). Transgenic microalgae as green cell-factories. Trends in Biotechnology, 22(1), 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Wakao, S., Fischer, B. B., & Niyogi, K. K. (2009). Sensing and responding to excess light. Annual Review of Plant Biology, 60, 239–260.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Gerken, H., Huang, J., & Chen, F. (2013). Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Process Biochemistry, 48(5–6), 788–795.

    Article  CAS  Google Scholar 

  • Liu, J., Sun, Z., Gerken, H., Huang, J., Jiang, Y., & Chen, F. (2014). Genetic engineering of the green alga Chlorella zofingiensis: A modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Applied Microbiology and Biotechnology, 98(11), 5069–5079.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcusmicroalgae as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160–167.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y., Tarkowska, D., Turečková, V., Luo, T., Xin, Y., Li, J., & Xu, J. (2014). Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function. Plant Journal, 80(1), 52–68.

    Article  CAS  Google Scholar 

  • Ma, X., Pan, K., Zhang, L., Zhu, B., Yang, G., & Zhang, X. (2016). Genetic transformation of Nannochloropsis oculata with a bacterial phleomycin resistance gene as dominant selective marker. Journal of Ocean University of China, 15(2), 351–356.

    Article  CAS  Google Scholar 

  • Mans, R., Wijsman, M., Daran-Lapujade, P., & Daran, J. M. (2018). A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9. FEMS Yeast Research, 18(7), foy063.

    Google Scholar 

  • Manuell, A. L., Beligni, M. V., Elder, J. H., Siefker, D. T., Tran, M., Weber, A., McDonald, T. L., & Mayfield, S. P. (2007). Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnology Journal, 5(3), 402–412.

    Google Scholar 

  • Mathur, J., & Koncz, C. (1998). PEG-mediated protoplast transformation with naked DNA. Methods in Molecular Biology, 82, 267–276.

    CAS  PubMed  Google Scholar 

  • Bacellar Mendes, L. B., & Vermelho, A. B. (2013). Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnology for Biofuels, 6(1), 152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer, F. P. (1991). Aquaculture disease and health management. Journal of Animal Science, 69(10), 4201–4208.

    Article  CAS  PubMed  Google Scholar 

  • Meyers, B., Zaltsman, A., Lacroix, B., Kozlovsky, S. V., & Krichevsky, A. (2010). Nuclear and plastid genetic engineering of plants: Comparison of opportunities and challenges. Biotechnology Advances, 28(6), 747–756.

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa, Y., Tamoi, M., & Shigeoka, S. (2001). Overexpression of a cyanobacterial fructose-1,6-sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nature Biotechnology, 19(10), 965–969.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, T., & Ototake, M. (1997). Antigen uptake and immune responses after immersion vaccination. Developments in Biological Standardization, 90, 59–68.

    CAS  PubMed  Google Scholar 

  • Nikolau, B. J., Ohlrogge, J. B., & Wurtele, E. S. (2003). Plant biotin-containing carboxylases. Archives of Biochemistry and Biophysics, 414(2), 211–222.

    Article  CAS  PubMed  Google Scholar 

  • Nymark, M., Sharma, A. K., Sparstad, T., Bones, A. M., & Winge, P. (2016). A CRISPR/Cas9 system adapted for gene editing in marine algae. Scientific Reports, 6, 24951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popper, Z. A., & Tuohy, M. G. (2010). Beyond the green: Understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiology, 153(2), 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posewitz, M. C., Smolinski, S. L., Kanakagiri, S., Melis, A., Seibert, M., & Ghirardi, M. L. (2004). Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. The Plant Cell, 16(8), 2151–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potrykus, I. (1991). Gene transfer to plants: Assessment of published approaches and results. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 205–225.

    Article  CAS  Google Scholar 

  • Qin, S., Lin, H., & Jiang, P. (2012). Advances in genetic engineering of marine algae. Biotechnology Advances, 30(6), 1602–1613.

    Article  CAS  PubMed  Google Scholar 

  • Quesada, A., Galvan, A., & Fernandez, E. (1994). Identification of nitrate transporter genes in Chlamydomonas reinhardtii. The Plant Journal, 5(3), 407–419.

    Article  CAS  PubMed  Google Scholar 

  • Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasala, B. A., Lee, P. A., Shen, Z., Briggs, S. P., Mendez, M., & Mayfield, S. P. (2012). Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One, 7(8), e43349.

    Google Scholar 

  • Rasala, B. A., & Mayfield, S. P. (2015). Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research, 123(3), 227–239.

    Article  CAS  PubMed  Google Scholar 

  • Rasala, B. A., Muto, M., Lee, P. A., Jager, M., Cardoso, R. M., Behnke, C. A., Kirk, P., Hokanson, C. A., Crea, R., Mendez, M., & Mayfield, S. P. (2010). Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnology Journal, 8(6), 719–733.

    Google Scholar 

  • San Cha, T., Yee, W., & Aziz, A. (2012). Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World Journal of Microbiology and Biotechnology, 28(4), 1771–1779.

    Google Scholar 

  • Shin, S. E., Lim, J. M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W. S., Lee, B., Hwangbo, K., & Kim, J. (2016). CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Scientific Reports, 6, 27810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies, H., & Stahl, W. (1997). Carotenoids and intercellular communication via gap junctions. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift fur Vitamin-und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 67(5), 364–367.

    CAS  PubMed  Google Scholar 

  • Sizova, I., Greiner, A., Awasthi, M., Kateriya, S., & Hegemann, P. (2013). Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant Journal, 73(5), 873–882.

    Article  CAS  Google Scholar 

  • Sommerset, I., Krossøy, B., Biering, E., & Frost, P. (2005). Vaccines for fish in aquaculture. Expert Review of Vaccines, 4(1), 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Specht, E. A., & Mayfield, S. P. (2014). Algae-based oral recombinant vaccines. Frontiers in Microbiology, 5, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinbrenner, J., & Sandmann, G. (2006). Transformation of the green alga Haematococcuspluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Applied and Environmental Microbiology, 72, 7477–7484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirewalt, V. L., Michalowski, C. B., Löffelhardt, W., Bohnert, H. J., & Bryant, D. A. (1995). Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Molecular Biology Reporter, 13(4), 327–332.

    Google Scholar 

  • Stournas, S., Lois, E., & Serdari, A. (1995). Effects of fatty acid derivatives on the ignition quality and cold flow of diesel fuel. Journal of the American Oil Chemists’ Society, 72(4), 433–437.

    Article  CAS  Google Scholar 

  • Subasinghe, R. P., Arthur, J. R., Phillips, M. J., & Reantoso, M. B. (2000). Thematic review on management strategies for major diseases in shrimp aquaculture. Cebu, Philippines: FAO, UN.

    Google Scholar 

  • Sun, M., Qian, K., Su, N., Chang, H., Liu, J., & Shen, G. (2003). Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnology Letters, 25(13), 1087–1092.

    Article  CAS  PubMed  Google Scholar 

  • Surzycki, R., Greenham, K., Kitayama, K., Dibal, F., Wagner, R., Rochaix, J. D., Ajam, T., & Surzycki, S. (2009). Factors effecting expression of vaccines in microalgae. Biologicals, 37(3), 133–138.

    Article  CAS  PubMed  Google Scholar 

  • Tacon, A. G., & Metian, M. (2009). Fishing for feed or fishing for food: Increasing global competition for small pelagic forage fish. Ambio, 38, 294–302.

    Article  PubMed  Google Scholar 

  • Tada, N., Shibata, S., Otsuka, S., Namba, K., & Oyaizu, H. (1999). Comparison of gene arrangements of chloroplasts between two centric diatoms, Skeletonema costatum and Odontella sinensis. DNA Sequence, 10(4–5), 343–347.

    Google Scholar 

  • Te, M. R., & Miller, D. J. (1998). Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): Expression of GUS in microalgae using heterologous promoter constructs. The Plant Journal, 13(3), 427–435.

    Google Scholar 

  • Turchini, G. M., Ng, W. K., & Tocher, D. R. (2010). Fish oil replacement and alternative lipid sources in aquaculture feeds. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Turmel, M., Otis, C., & Lemieux, C. (1999). The complete chloroplast DNA sequence of the green alga Nephroselmisolivacea: Insights into the architecture of ancestral chloroplast genomes. Proceedings of the National Academy of Sciences of the United States of America, 96(18), 10248–10253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turmel, M., Otis, C., & Lemieux, C. (2002). The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11275–11280.

    Google Scholar 

  • Vo, H. N. P., Ngo, H. H., Guo, W., Nguyen, T. M. H., Liu, Y., Liu, Y., Nguyen, D. D., & Chang, S. W. (2018). A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment. Science of the Total Environment, 651(1), 1549–1568.

    PubMed  Google Scholar 

  • Wakasugi, T., Nagai, T., Kapoor, M., Sugita, M., Ito, M., Ito, S., Tsudzuki, J., Nakashima, K., Tsudzuki, T., Suzuki, Y., & Hamada, A. (1997). Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5967–5972.

    Google Scholar 

  • Walker, T. L., Purton, S., Becker, D. K., & Collet, C. (2005). Microalgae as bioreactors. Plant Cell Reports, 24(11), 629–641.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Lu, Y., Xin, Y., Wei, L., Huang, S., & Xu, J. (2016). Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal, 88(6), 1071–1081.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., Liu, J., Liu, B., Sun, P., Ma, X., Jiang, Y., Wei, D., & Chen, F. (2015). Development of a stable genetic system for Chlorella vulgaris—A promising green alga for CO2biomitigation. Algal Research, 12, 134–141.

    Article  Google Scholar 

  • Yang, Y. G., Shariff, M., Lee, L. K., & Hassan, M. D. (1999, November). Malaysia: national review on management strategies for major diseases in shrimp aquaculture. In WB/NACA/WWF/FAO. Thematic review on management strategies for major diseases in shrimp aquaculture. Proceedings of a workshop held in Cebu, Philippines on (pp. 28–30).

    Google Scholar 

  • Yoon, S. M., Kim, S. Y., Li, K. F., Yoon, B. H., Choe, S., & Kuo, M. M. C. (2011). Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Applied Microbiology and Biotechnology, 91(3), 553–563.

    Google Scholar 

  • Zabawinski, C., Van Den Koornhuyse, N., D’Hulst, C., Schlichting, R., Giersch, C., Delrue, B., Lacroix, J. M., Preiss, J., & Ball, S. (2001). Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. Journal of Bacteriology, 183(3), 1069–1077.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Higher Institution Centre of Excellence (HICOE) Research Grant (Innovative Vaccines and Therapeutics against Fish Diseases) (Project No. 6369100) and SATREPS (JICA-JST): COSMOS-MOHE G4-B Research Grant (Microalgae for Sustainable Aquaculture Health: Microalgae Vaccine Delivery System) (Project No. 6300866) for the funds to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zetty Norhana Balia Yusof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abidin, A.A.Z., Suntarajh, M., Yusof, Z.N.B. (2020). Microalgae as a Vaccine Delivery System to Aquatic Organisms. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_10

Download citation

Publish with us

Policies and ethics