Skip to main content

Food and High Value Products from Microalgae: Market Opportunities and Challenges

  • Chapter
  • First Online:
Microalgae Biotechnology for Food, Health and High Value Products

Abstract

Microalgae are a potential source of molecules for a wide range of food and novel high-value products and have good market opportunities. They can be used in biofuels, health complements, feed, medicine and cosmetics. The development of innovative and sustainable technologies with minimum energy inputs is required for large-scale cultivation and downstream processing of lipids and hydrocarbons in order for the production to be economically viable. In addition, the viability of bioenergy production from microalgae biomass is contingent on the net energy gain of the overall process, with exhaustive utilization of algal biomass for biofuel and other co-products for feed, food, and chemicals. The energy output from the biomass as fuel has to be greater than the energy required to produce and process the algae. Microalgae produce a comprehensive variety of bioproducts such as enzymes, pigments, lipids, sugars, vitamins and sterols. Moreover, its capability to alter atmospheric CO2 into beneficial products such as lipids, carbohydrates, metabolites and proteins cannot be overstated. The key challenges appear to be high cost of operation, infrastructure and maintenance, selection of algal strains with high protein contents, dewatering and commercial scale harvesting. Optimizing the manufacture and commercialization of microalgae value products depend also on numerous factors (such as market and financial affairs). There is limitation of authentic and reliable data and statistics of microalgae market opportunities which make it difficult to assess their actual potential. Long-term research is needed to develop systems for the production of sustainable algal-based products, as sustainability is a key concern especially for food, feed and fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, K., Imamaki, A., & Hirano, M. (2002). Removal of nitrate, nitrite, ammonium and phosphate ions from water by the aerial microalga Trentepholia aurea. Journal of Applied Phycology, 14, 129–134.

    Article  CAS  Google Scholar 

  • Alam, M. A., & Wang, Z. (Eds.). (2019). Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 1–655). New York, NY: Springer.

    Google Scholar 

  • Ambati, R. R., Phang, S. M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Marine Drugs, 12(1), 128–152. https://doi.org/10.3390/md12010128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrenfeld, M. J., & Falkowski, P. G. (1997). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42(l), 1–20.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A. (2013). High-value products from microalgae their development and commercialization. Journal of Applied Phycology, 25, 743–756.

    Article  CAS  Google Scholar 

  • Bosschaert, T. (2002). Spirulina. Plant Research, University of Western Australia, School of Architecture, Student of Delft University of Technology, Faculty of Industrial Design Engineering.

    Google Scholar 

  • Becker, E. W. (1994). Microalgae biotechnology and microbiology. Cambridge: Cambridge University Press. isbn:978-0-521-06113.

    Google Scholar 

  • Berman, J., et al. (2014). Nutritionally important carotenoids as consumer products. Phytochemistry Reviews, 14, 727–743.

    Article  CAS  Google Scholar 

  • Brenna, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Review, 14, 557–577.

    Article  CAS  Google Scholar 

  • Bush, B. (2019). How lead gen marketers can use value chains to make better decisions. Linked in report. https://www.linkedin.com/pulse/how-lead-gen-marketers-can-use-value-chains-make-better-becky-bush/

  • Cardozo, K. H. M., et al. (2007). Metabolites from algae with economic impact. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 146(1–2), 60–78.

    PubMed  Google Scholar 

  • Chacon-Lee, T. L., & Gonzalez-Marino, G. E. (2010). Microalgae for healthy foods—Possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety, 6, 655–675.

    Article  Google Scholar 

  • Das, P., Aziz, S. S., & Obbard, J. P. (2011). Two phase microalgae growth in the open system for enhanced lipid productivity. Renewable Energy, 36(9), 2524–2528.

    Article  CAS  Google Scholar 

  • Dillon, J. C., Phuc, A. P., & Dubacq, J. P. (1995). Nutritional value of the alga Spirulina. World Review of Nutrition and Dietetics, 77, 32–46.

    Google Scholar 

  • Denis, C., Massé, A., Fleurence, J., & Jaouen, P. (2009). Concentration and pre-purification with ultrafiltration of a r-phycoerythrin solution extracted from macro-algae grateloupia turuturu: Process definition and up-scaling. Separation and Purification Technology, 69, 37–42.

    Article  CAS  Google Scholar 

  • DOE (U.S. Department of Energy). (2016). National algal biofuels technology review. Washington, DC: U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

    Google Scholar 

  • Duncan, R. C. (2001). The peak of world oil production and the road to the Olduvai Gorge. Population and Environment, 22(5), 503–522.

    Article  Google Scholar 

  • European Union. (2014). Commission implementing regulation (EU) no: 828/2014. The Official Journal of the European Union.

    Google Scholar 

  • Eckelberry, R. (2011). Algae—Food or chemical grade. Algae Industry Magazine. http://www.algaeindustrymagazine.com/algae-business-algae-food-or-chemical-grade/

  • Enzing, C., Ploeg, M., Barbosa, M., & Sijtsma, L. (2014). Microalgae-based products for the food and feed sector: An outlook for Europe. Scientific and policy reports (Vol. 82, pp. 19–37). Luxembourg: EU Publications.

    Google Scholar 

  • FAO (2010). FAO fisheries and aquaculture report no. 978. Report of the join FAO/WHO expert consultation on the risk and benefits of fish consumption. Rome, 25–29 January 2010.

    Google Scholar 

  • Falquet, J. (1997). The nutritional aspects of Spirulina. Genève: Antenna Technology.

    Google Scholar 

  • Fresh Designpedia. (2019). Algae eating and healthy stay—What you should know about the algae. Retrieved August 28, 2019, from https://www.freshdesignpedia.com/trends/algae-eating-and-healthy-stay-what-you-should-know-about-the-algae.html

  • Gantar, M., & Svircev, Z. (2008). Microalgae and cyanobacteria: Food for thought. Journal of Phycology, 44, 260–268.

    Article  PubMed  Google Scholar 

  • Gao, K. (1998). Chinese studies on the edible blue-green alga, Nostoc flagelliforme: A review. Journal of Applied Phycology, 10, 37–49.

    Article  Google Scholar 

  • Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411), 329–335.

    Article  CAS  PubMed  Google Scholar 

  • Gross, M. (2013). Development and optimization of algal cultivation systems. Graduate theses and dissertations, Iowa State University. 13138p. 4.

    Google Scholar 

  • Grune, T., Lietz, G., Palou, A., et al. (2010). Beta-carotene is an important vitamin A source for humans. The Journal of Nutrition, 140, 2268S–2285S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harasym, J., & Oledzki, R. (2014). Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition, 30, 511–517.

    Article  CAS  PubMed  Google Scholar 

  • Harris, W. S. (2010). Omega-3 fatty acids. In P. M. Coates, J. M. Betz, M. R. Blackman, et al. (Eds.), Encyclopedia of dietary supplements (2nd ed., pp. 577–586). London: Informa Healthcare.

    Chapter  Google Scholar 

  • Hamed, I. (2016). The evolution and versatility of microalgal biotechnology: A review. Comprehensive Reviews in Food Science and Food Safety, 2016(15), 1104–1123.

    Article  PubMed  Google Scholar 

  • Hay, I. D., Rehman, Z. U., Moradali, M. F., Wang, Y., & Rehm, B. H. A. (2013). Microbial alginate production, modification and its applications. Microbial Biotechnology, 6, 637–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermawan, J., Masithah, E. D., Tjahjaningsih, W., Abdillah, A. A. (2018). Increasing β-carotene content of phytoplankton Dunaliella salina using different salinity media. IOP Conference Series: Earth and Environmental Science.

    Article  Google Scholar 

  • Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23, 543–597.

    Article  CAS  Google Scholar 

  • Hosikian, A., Lim, S., Halim, R., & Danquah, M. K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering, 2010, 1–11.

    Google Scholar 

  • Hounslow, E. (2016). Salt stress in two Chlamydomonas species: Novel insights into biofuel production from microalgae. PhD thesis, University of Sheffield, UK.

    Google Scholar 

  • Jones, P. J. H., & Rideout, T. (2014). Lipids, sterols, and their metabolites. In A. C. Ross, B. Caballero, R. J. Cousins, K. L. Tucker, & T. R. Ziegler (Eds.), Modern nutrition in health and disease (11th ed.). Baltimore, MD: Lippincott Williams & Wilkins.

    Google Scholar 

  • Jones, P. J. H., & Papamandjaris, A. A. (2012). Lipids: Cellular metabolism. In J. W. Erdman, I. A. Macdonald, & S. H. Zeisel (Eds.), Present knowledge in nutrition (10th ed., pp. 132–148). Washington, DC: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N., & Assimakopoulos, D. A. (2011). Spirulina in clinical practice: Evidence-based human applications. Evidence-based Complementary and Alternative Medicine, 2011, 19. https://doi.org/10.1093/ecam/nen058.

    Article  Google Scholar 

  • Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khattar, J. I. S., Singh, D. P., & Kaur, G. (2009). Algal biology and biotechnology. New Delhi: I.K. International.

    Google Scholar 

  • Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52–63.

    Article  Google Scholar 

  • Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D.-T., & Show, P.-L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16–24.

    Article  Google Scholar 

  • Kim, J. H., Affan, M. A., Jang, J., Kang, M. H., Ko, A. R., Jeon, S. M., Oh, C., Heo, S. J., Lee, Y. H., Ju, S. J., et al. (2015). Morphological, molecular, and biochemical characterization of astaxanthin-producing green microalga Haematococcus sp. KORDI03 (haematococcaceae, chlorophyta) isolated from Korea. Journal of Microbiology and Biotechnology, 25, 238–246.

    Article  CAS  PubMed  Google Scholar 

  • Kruus, M. (2017). Purification, biomass production and cryopreservation of aero-terrestrial microalgae and cyanobacteria. Helsinki Metropolia University of Applied Sciences (thesis).

    Google Scholar 

  • Li, J., Zhu, D., Niu, J., Shen, S., & Wang, G. (2011). An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances, 29(6), 568–574.

    Article  CAS  PubMed  Google Scholar 

  • Luiten, E. E., Akkerman, I., Koulman, A., Kamermans, P., Reith, H., Barbosa, M. J., Sipkema, D., & Wijfels, R. H. (2003). Realizing the promises of marine biotechnology. Biomolecular Engineering, 20, 429–439.

    Article  CAS  PubMed  Google Scholar 

  • Milovanovic, I., Misan, A., Saric, B., Kos, J., Mandic, A., Simeunovic, J., et al. (2012). Evaluation of protein and lipid content and determination of fatty acid profile in selected species of cyanobacteria. In Proceedings of the 6th Central European Congress on Food, CE Food, Novi Sad, Serbia, 23–26 May 2012.

    Google Scholar 

  • Maeda, H., Fukuda, S., Izumi, H., & Saga, N. (2018). Anti-oxidant and fucoxanthin contents of brown alga Ishimozuku (Sphaerotrichia divaricata) from the West Coast of Aomori, Japan. Marine Drugs, 16, 255. https://doi.org/10.3390/md16080255.

    Article  CAS  PubMed Central  Google Scholar 

  • Market Research Report. (2017). Astaxanthin market analysis by source (Natural [Yeast, Krill/Shrimp, Microalgae] and Synthetic), by product (dried biomass/powder, oil, soft gels, liquid), by application, and segment forecasts, 2018–2025.

    Google Scholar 

  • Market Watch. (2019). Beta carotene market size, share 2019. Global Beta Carotene Market Report, 2019.

    Google Scholar 

  • Market Research Report. (2016). Beta-carotene market analysis by source (algae, fruits & vegetables, & synthetic), by application (food & beverages, dietary supplements, cosmetics, & animal feed) and segment forecasts to 2024. https://www.grandviewresearch.com/industry-analysis/beta-carotene-market.

  • Mata, T. M., Martins, A. A., & Caetano, N. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    Article  CAS  Google Scholar 

  • Matos, Â. P., Feller, R., Moecke, E. H. S., de Oliveira, J. V., Junior, A. F., Derner, R. B., & Sant’Anna, E. S. (2016). Chemical characterization of six microalgae with potential utility for food application. Journal of the American Oil Chemists’ Society, 93, 963–972.

    Article  CAS  Google Scholar 

  • Market Research Future. (2019). Omega-3 PUFA market scope 2019, global industry analysis, key players, size, share, growth, trends and forecast to 2023. https://www.marketwatch.com/press-release/omega-3-pufa-market-scope-2019-global-industry-analysis-key-players-size-share-growth-trends-and-forecast-to-2023-2019-02-22

  • Market Watch. (2018). Astaxanthin market challenges, key players, industry segments, development, opportunities, forecast report 2021. https://www.marketwatch.com/press-release/astaxanthin-market-challenges-key-players-industry-segments-development-opportunities-forecast-report-2021-2018-05-23

  • Martín, J. F., Gudiña, E., & Barredo, J. L. (2008). Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microbial Cell Factories 7:3.

    Google Scholar 

  • Mesbah, N. M., & Wiegel, J. (2006). Isolation, cultivation and characterization of alkalithermophiles. Methods in Microbiology, 35, 451–468.

    Article  CAS  Google Scholar 

  • Milledge, J. J. (2011). Commercial application of microalgae other than as biofuels: A brief review. Reviews in Environmental Science and Bio/Technology, 10(1), 31–41.

    Article  Google Scholar 

  • Meier, R. L. (1955). Biological cycles in the transformation of solar energy into useful fuels. In F. Daniels & A. Duffie (Eds.), Solar energy research (pp. 179–183). Madison, WI, University of Wisconsin Press.

    Google Scholar 

  • Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A., Rimauro, J., & Musmarra, D. (2018). Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. International Journal of Environmental Research and Public Health, 15(11), E2436. https://doi.org/10.3390/ijerph15112436.

    Article  CAS  PubMed  Google Scholar 

  • Muhaemin, M., & Kaswadji, R. F. (2009). Biomass nutrient profiles of marine microalgae Dunaliella salina. Journal Penelitian Sains, 13, 64–67.

    Google Scholar 

  • Nicoletti, M. (2016). Review microalgae nutraceuticals. Food, 5, 54. https://doi.org/10.3390/foods5030054.

    Article  CAS  Google Scholar 

  • Ozkurt, I. (2009). Qualifying of safflower and algae for energy. Energy Education Science and Technology Part A, 23, 145–151.

    CAS  Google Scholar 

  • Oswald, W. J., & Golueke, C. G. (1960). Biological transformation of solar energy. Advances in Applied Microbiology, 2, 223–262. https://doi.org/10.1016/S0065-2164(08)70127-8.

    Article  CAS  PubMed  Google Scholar 

  • Oil Squeeze. (2008). Business: Oil squeeze. http://content.time.com/time/magazine/article/0,9171,946222,00.html

  • Parker, B., Malin, G., Benson, D., & Schlarb-Ridley, B. (2014). Regulatory factsheet 17—algae as a feedstock for energy. EnAlgae project output WP2A10.18, 1 pp. www.enalgae.eu/public-deliverables.htm

  • Pérez-López, P., et al. (2014). Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: From lab to pilot scale. Journal of Cleaner Production, 64, 332–344.

    Article  CAS  Google Scholar 

  • Pimentel, F., Alves, R., Rodrigues, F., & Oliveira, M. P. P. (2018). Macroalgae-derived ingredients for cosmetic industry—an update. Cosmetics, 5(1), 2.

    Article  CAS  Google Scholar 

  • Plaza, M., Herrero, M., Cifuentes, A., & Ibanez, E. (2009). Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57, 7159–7170.

    Article  CAS  PubMed  Google Scholar 

  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.

    Article  CAS  PubMed  Google Scholar 

  • Rastogi, R. P., Datta, M., & Pandey, A. (2017). Book: Algal green chemistry—Recent progress in biotechnology. Amsterdam: Elsevier.

    Google Scholar 

  • Romay, C., González, R., Ledón, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: Abiliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, 4, 207–216.

    Article  CAS  Google Scholar 

  • Salimbeni, A. (2014). European biomass industry association, open workshop on microalgae market, 12 Nov 2014, Brussels.

    Google Scholar 

  • Sánchez, J. F., Fernández, J. M., Acién, F. G., Rueda, A., Pérez-Parra, J., & Molina, E. (2008). Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry, 43, 398–405.

    Article  CAS  Google Scholar 

  • Sathasivam, R., Radhakrishnan, R., Hashem, A., Elsayed, F., & Allah, E. F. (2019). Review microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26, 709–722.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., Kate, B. N., & Banerjee, U. C. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology, 25(3), 73–95.

    Google Scholar 

  • Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 7, 531.

    PubMed  PubMed Central  Google Scholar 

  • Shields, R. J., & Lupatsch, I. (2012). Algae for aquaculture and animal feeds. SCHWERPUNKT, Technikfolgenabschätzung – Theorie und Praxis 21. Jg., Heft 1.

    Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Tibbetts, S. M., Milley, J. E., & Lall, S. P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology, 27, 1109–1119.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., & Troy, D. (2015). Seaweed sustainability: Food and non-food applications. Waltham, MA: Elsevier.

    Google Scholar 

  • Taufiqurrahmi, N., Religia, P., Mulyani, G., Suryana, D., Ichsan, Tanjung, F. A., et al. (2017). Phycocyanin extraction in Spirulina produced using agricultural waste. IOP Conference Series: Materials Science and Engineering 206, 012097.

    Article  Google Scholar 

  • Tomaselli, L. (1997). Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthospira (Spirulina) platensis. In A. Vonshak (Ed.), Spirulina platensis (Arthrospira): Physiology, cell biology and biotechnology (pp. 1–16). London: Taylor and Francis.

    Google Scholar 

  • Transparency Market Research. (2018). Beta-carotene market (source—fruits & vegetables, algae & fungi, synthetic; end use—food, aquaculture feed, poultry & pet feed, dietary supplements, pharmaceuticals, cosmetics)—global industry analysis, size, share, growth, trends, and forecast 2019–2027.

    Google Scholar 

  • USDOE. (2010). National algal biofuels technology roadmap. Washington, DC: U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program.

    Google Scholar 

  • Vieira, V. V. (2016). The role of the value-chain for the development of high-value products from microalgae. Algal Biomass Summit 2017, European Algal Biomass Association, UABA.

    Google Scholar 

  • Vigani, M., Parisi, C., Rodríguez-Cerezo, E., Barbosa, M. J., Sijtsma, L., Ploeg, M., & Enzing, C. (2015). Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends in Food Science & Technology, 42, 81–92. https://doi.org/10.1016/j.tifs.2014.12.004.

    Article  CAS  Google Scholar 

  • Voort, M. P. J., van der Vulsteke, E., de Visser, C. L. M. (2015). Marco-economics of algae products. Output report WP2A7.02 of the EnAlgae Project, Swansea. Retrieved August 17, 2019, from http://www.enalgae.eu/publicdeliverables.htm.

  • Williams, P. J. L. B., & Laurens, L. M. (2010). Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics and economics. Energy and Environmental Science, 3, 554–590.

    Article  CAS  Google Scholar 

  • Wang, G., Sun, H., Fan, X., & Tseng, C. (2001). Large-scale isolation and purification of R-phycoerythrin from red alga Palmaria palmata using the expanded bed adsorption method. Acta Botanica Sinica, 44, 541–546.

    Google Scholar 

  • Wayama, M., Ota, S., Matsuura, H., Nango, N., Hirata, A., Kawano, S., et al. (2013). Three-dimensional ultrastructural study of oil and Astaxanthin accumulation during encystment in the green alga haematococcus pluvialis. PLoS One, 8(1), e53618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellinger, A. (2009). IEA bioenergy: Algal biomass, does it save the world? Short reflections. Task. 37.

    Google Scholar 

  • Wolkers, H., Barbosa, M., Kleinegris, D. M. M., Bosma, R., & Wijffels, R. H. (2011). Microalgae: The green gold of the future? In P. Harmsen (Ed.), Large-scale sustainable cultivation of microalgae for the production of bulk commodities (Vol. 1, p. 34). Wageningen: ProPress.

    Google Scholar 

  • Wu, H., Niu, H., Shao, A., Wu, C., Dixon, B. J., Zhang, J., & Wang, Y. (2015). Astaxanthin as a potential neuroprotective agent for neurological diseases. Marine Drugs, 13(9), 5750–5766. https://doi.org/10.3390/md13095750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z.-Q., Cao, W.-T., Liu, J., Cao, Y., Su, Y.-X., & Chen, Y.-M. (2016). Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults. Osteoporosis International, 27, 1593–1601.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, X., Danquah, M. K., Chen, X. D., & Yinghau, L. (2012). Microalgae bioengineering: From CO2 fixation to biofuel production. Renewable and Sustainable Energy Review, 15, 3252–3260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khondokar M. Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, K.M. (2020). Food and High Value Products from Microalgae: Market Opportunities and Challenges. In: Alam, M., Xu, JL., Wang, Z. (eds) Microalgae Biotechnology for Food, Health and High Value Products. Springer, Singapore. https://doi.org/10.1007/978-981-15-0169-2_1

Download citation

Publish with us

Policies and ethics