Skip to main content

Untapped Genetic Diversity of Wild Relatives for Crop Improvement

  • Chapter
  • First Online:
Rediscovery of Genetic and Genomic Resources for Future Food Security

Abstract

We live in a time when, thanks to the achievements of a modern civilization, the consumption and destruction are uncontrolled of what ensures human survival on the planet – the biosphere. Special pressure is focused on biodiversity, equally to all its elements – genes, species, and ecosystems. In order to ensure sustainable food supply for increasing human population, new varieties with increased tolerance to environmental stresses need to be created. Due to the richness of genetic diversity, CWR show very high adaptability in a fairly wide range of ecological conditions. Therefore, in order to preserve the adaptability of crops and future food safety, CWR, as a critical component of plant genetic resources for food and agriculture, will be needed more than ever before. There is no doubt that climate change in the future will increasingly affect the survival of wild species. The ever-present loss of their germplasm and habitat requires greater mobility in their protection. It is therefore necessary to take urgent steps to preserve these resources both in their natural habitats (in situ) and in the gene banks (ex situ), while the genetic diversity they contain is still available. Any further postponement of their conservation would lead to further disturbance of biodiversity, and these activities would become even more uncertain in the future. For these reasons it is necessary to develop acceptable conservation agendas as soon as possible that will offer a solution where and how to protect the diversity of wild relatives in situ. Due to their actual or potential value, this should be done as soon as possible in order to ensure continuous crop improvement for food sustainability through the conservation of CWR diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEGIS:

An European Genebank Integrated System

AnGR:

Animal genetic resources

CBD:

Convention on Biological Diversity

CIAT:

International Center for Tropical Agriculture

CT:

Crop Trust

ESA:

European Seed Association

FAO:

Food and Agriculture Organization of the United Nations

ICWRA:

Important Crop Wild Relatives Areas

IFPRI:

International Food Policy Research Institute

IPCC:

Intergovernmental Panel on Climate Change

ITPGRFA:

International Treaty on Plant Genetic Resources for Food and Agriculture

IUCN:

International Union for Conservation of Nature

MAA:

Most Appropriate Accessions

MAWP:

Most Appropriate Wild Populations

MEA:

Millennium Ecosystem Assessment

NASA:

National Aeronautics and Space Administration

PA:

Protected area

PGRFA:

Plant Genetic Resources for Food and Agriculture

PGR:

Plant Genetic Resources

RBG:

Royal Botanic Gardens (brand name Kew)

UN:

United Nations

References

  • Andjelkovic V, Ristic D, Babic V, Dumanovic Z, Kravic N (2016) Maize landraces as a source for adaptation to climate change. Ratar Povrt 53(1):24–29

    Article  Google Scholar 

  • Anonymous (2007) The conservation of global crop genetic resources in the face of climate change. Summary Statement from a Bellagio Meeting organized by the Global Conservation Trust, held on September 3–7, 2007. Available from: http://www.croptrust.org/documents/WebPDF/Bellagio_final1.pdf

  • Assenov B, Andjelkovic V, Ignjatovic-Micic D, Vancetovic J, Nikolic A, Christov NK, Tsonev S, Abu-Mhadi N, Vassilev D, Muhovski Y, Ilchovska M, Todorovska E (2013) Identification of SNP mutations in MYBE-1 gene involved in drought stress tolerance in maize. Bulgarian J Agric Sci 19:181–185

    Google Scholar 

  • Babic V, Vancetovic J, Prodanovic S, Kravic N, Babic M, Andelkovic V (2015) Numerical classification of Western Balkan drought tolerant maize (Zea mays L.) landraces. J Agric Sci Technol 17:455–468

    Google Scholar 

  • Bamberg JB, Hanneman RE (2003) Calcium rich potatoes: it’s in their genes. Agricultural Research Magazine, March 2003

    Google Scholar 

  • Barazani O, Perevolotsky A, Hadas R (2008) A problem of the rich, prioritizing local plant genetic resources for ex situ conservation in Israel. Biol Conserv 141:596–600

    Article  Google Scholar 

  • Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML (2011) Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS One 6(4):e19315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W, Waugh R (2017) Development and evaluation of a barley 50k iSelect SNP Array. Front Plant Sci 8:1792

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilz M, Kell SP, Maxted N, Lansdown RV (2011) European red list of vascular plants. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Brar DS, Khush GS (1997) Wide hybridization for rice improvements: Alien gene transfer and molecular characterization of introgression. In: Jones MP, Dingkhun M, Johnson DE, Fagade SO (eds) Interspecific hybridization: progress and prospect. Bouake, WARDA, pp 21–29

    Google Scholar 

  • Breithaupt H (2008) Up to the challenge? Rising prices for food and oil could herald a renaissance of plant science. EMBO Reports 9:832–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Castaneda-Alvarez NP, de Haan S, Juarez H, Khoury CK, Achicanoy HA and Sosa CC (2015) Ex situ conservation priorities for the wild relatives of potato (Solanum L. section petota). PLoS One 10: e0122599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavaliere C (2009) The effects of climate change on medicinal and aromatic plants. Herbal Gram (American Botanical Council) 81:44–57

    Google Scholar 

  • CBD (2010) Global strategy for plant conservation. Secretariat of the Convention on Biological Diversity, Montreal. https://www.cbd.int/gspc/

  • Clark PU (2016) Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat Clim Chang 6(4):360–369

    Article  Google Scholar 

  • Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y et al (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129:1887–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colton ML, Groza IH, Wielgus MS, Jiang J (2006) Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Sci 46:589–594

    Article  CAS  Google Scholar 

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Conway E (2008) What’s in a name? Global warming vs. climate change. NASA. 5 December 2008

    Google Scholar 

  • Cowan RS, Chase MW, Kress WJ, Savolainen V (2006) 300,000 species to identify: problems, progress, and prospects in DNA barcoding of land plants. Taxon 55:611–616

    Article  Google Scholar 

  • De Vere N, Rich TC, Trinder SA, Long C (2015) DNA barcoding for plants. Methods Mol Biol 1245:101–118

    Article  PubMed  CAS  Google Scholar 

  • Dempewolf H, Hodgins KA, Rummell SE, Ellstrand NC, Rieseberg LH (2012) Reproductive isolation during domestication. Plant Cell 24:2710–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempewolf H, Eastwood RJ, Guarino L, Khoury CK, Muller JV, Toll J (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol Sustain Food Syst 38:369–377

    Article  Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Article  Google Scholar 

  • Dias S, Dulloo ME, Arnaud E (2011) The role of EURISCO in promoting use of agricultural biodiversity. In: Maxted N, Dulloo ME, Ford-Lloyd BV, Frese L, Iriondo J, de Carvalho MAA P (eds) Agrobiodiversity conservation – Securing the diversity of crop wild relatives and landraces. CABI, Wallingford, pp 270–277

    Google Scholar 

  • Diffenbaugh N, Krupke CH, White MA, Alexander CA (2008) Global warming presents new challenges for maize pest management. Environ Res Lett 3(4):1–9

    Article  Google Scholar 

  • Dudley N (2008) Guidelines for applying protected area management categories. IUCN, Gland

    Book  Google Scholar 

  • Dulloo ME, Labokas J, Iriondo JM, Maxted N, Lane A, Laguna E, Jarvis A, Kell SP (2008) Genetic Reserve Location and Design. In: Iriondo JM, Maxted N, Dulloo ME (eds) Conserving plant genetic diversity in protected area, CAB International, Wallingford, pp 23–64

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engels JMM, Ebert AW, Thormann I, de Vicente MC (2006) Centres of crop diversity and/or origin, genetically modified crops and implications for plant genetic resources conservation. Genetic Resour Crop Evol 53:1675–1688

    Article  Google Scholar 

  • ESA (2014) ESA report. www.seedworld.com

  • Eubanks WM (2006) A genetic bridge to utilize Tripsacum germplasm in maize improvement. Maydica 51:315–327

    Google Scholar 

  • Evenson RE (2005) Besting Malthus, the Green Revolution. Proc Am Philos Soc 149:469–486

    Google Scholar 

  • FAO (2008) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO, Rome

    Google Scholar 

  • FAO (2010) Second report on the world’s plant genetic resources for food and agriculture. FAO, Rome, p 299

    Google Scholar 

  • FAO (2011) The second global plan of action for plant genetic resources for food and agriculture https://goo.gl/uucTlL

  • FAO (2013) Report from Technical Workshop. Towards the establishment of a global network for in situ conservation and on-farm management of PGRFA. Rome, 13 November 2012. Food and Agriculture Organization of the United Nations, Rome Italy www.fao.org/agriculture/crops/thematic-sitemap/theme/seeds-pgr/onfarm-network/en/

  • FAO (2015) The state of food insecurity in the world. Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome

    Google Scholar 

  • Farooq S (2004) Salt tolerance in Aegilops species: a success story from research and production to large-scale utilization of salt-tolerant wheats. In: Taha FS, Ismaial S, Jaradat A (eds) Prospects of saline agriculture in the Arabian peninsula. Amheerst Scientific Publishers, Massachusetts, pp 121–134

    Google Scholar 

  • Farooq S, Azam F (2001) Production of low input and stress tolerant wheat germplasm through the use of biodiversity residing in the wild relatives. Hereditas 135:211–215

    Article  CAS  PubMed  Google Scholar 

  • Fedak G (1999) Molecular aids for integration of alien chromatin through wide crosses. Genome 42:584–591

    Article  CAS  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia AS (2013) Genetics and consequences of crop domestication. J Agric Food Chem 61:8267–8276

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Ford-Lloyd B, Kell SP, Maxted N (2008) Establishing conservation priorities for crop wild relatives. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo ME, Turok J (eds) Crop wild relative conservation and use. CAB International, Wallingford, pp 110–119

    Google Scholar 

  • Fukunaga K, Hill J, Vigouroux Y, Matsuoka Y, Sanchez J, Liu K, Edward S, Buckler SE, Doebley J (2005) Genetic diversity and population structure of teosinte. Genet 169:2241–2254

    Article  CAS  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 21:998–1001

    Article  CAS  Google Scholar 

  • Gahlaut V, Jaiswal V, Tyagi BS, Singh G, Sareen S, Balyan HS, Gupta PH (2017) QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PloS One 12(8):e0182857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P et al (2013) Sustainable intensification in agriculture: premises and policies. Sciences 341:33–34

    Article  CAS  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    Article  CAS  PubMed  Google Scholar 

  • Gibson G, Dworkin I (2004) Uncovering cryptic genetic variation. Nat Rev Genet 5(5):681–690

    Article  CAS  PubMed  Google Scholar 

  • Guarino L, Lobell DB (2011) A walk on the wild side. Nat Clim Chang 1:374–375

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20: 509-517

    Article  Google Scholar 

  • Harvey LT, Martin JT (1992) Resistance to the wheat curl mite (Acari: Eriophyidae) in common wheat. Cereal Res Commun 20:63–66

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B: Biol Sci 270: 313-321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry RJ, Nevo E (2014) Exploring natural selection to guide breeding for agriculture. Plant Biotechnol 12:655–662

    Article  Google Scholar 

  • Heywood VH (2011) Selection and prioritization of species/populations and areas. In: Hunter D, Heywood V (eds) Crop wild relatives, A manual of in situ conservation. Issues in Agricultural biodiversity. Earthscan, London, pp 129–168

    Google Scholar 

  • Heywood VH, Dulloo ME (2005) In situ conservation of wild plant species: a critical global review of good practices. Food and Agriculture Organisation, Rome

    Google Scholar 

  • Holmes M (2018) Somatic hybridization. The rise and fall of a mid-twentieth-century biotechnology. Hist Stud Nat Sci 48:1–23

    Article  Google Scholar 

  • Hoyt E, Brown S (1988) Conserving the wild relatives of crops. IBPGR, Rome

    Google Scholar 

  • Hua L, Wang DR, Tan LB, Fu YC, Liu FX, Xiao LT et al (2015) LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell 27:1875–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulse-Kemp AM, Ashrafi H, Plieske J, Lemmj SK, Hill T et al (2016) A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding. Hortic Res 3:16036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hummer KE, Hancock JF (2015) Vavilovian centers of plant diversity: implications and impacts. Hortic Sci 50(6):780–783

    CAS  Google Scholar 

  • Hunter D, Heywood V (eds) (2011) Crop wild relatives: a manual of in situ conservation. Biodiversity International, Rome

    Google Scholar 

  • Iriondo JM, Dulloo E, Maxted N (2008) Conserving plant genetic diversity in protected areas: population management of crop wild relatives. CAB International Publishing, Wallingford

    Book  Google Scholar 

  • Iriondo JM, Maxted N, Kell SP, Ford-Lloyd BV, Lara-Romero C, Labokas J, Magos Brehm J (2012) Quality standards for genetic reserve conservation of crop wild relatives. In: Maxted N, Dulloo ME, Ford-Lloyd BV, Frese L, Iriondo JM, de Carvalho MAA P (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford, pp 72–77

    Chapter  Google Scholar 

  • Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, Ando I, Ogawa T, Kondo M (2010) A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann Bot 106(3):515–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 26:13–23

    Article  Google Scholar 

  • Jena KK (2010) The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. Sativa. Breed Sci 6:518–523

    Article  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Jovovic Z, Kratovalieva S (2016) Global Strategies for sustainable use of agricultural genetic and indigenous traditional knowledge. In Salgotra, R.K. and Gupta, B.B. (Eds): Plant genetic resources and traditional knowledge for food security. Springer New York, 39-72

    Google Scholar 

  • Jovovic Z, Dolijanovic Z, Kovacevic D, Velimirović A, Biberdzic M (2012) The productive traits of different potato genotypes in mountainous region of Montenegro. Genetika 44(2):389–397

    Article  Google Scholar 

  • Jovovic Z, Stesevic D, Meglic V and Dolnicar P (2013) Old potato varieties in Montenegro. Monograph, University of Montenegro, Biotechnical faculty Podgorica

    Google Scholar 

  • Jovovic Z, Micev B, Velimirovic A (2016) Impact of climate change on potato production in Montenegro and options to mitigate the adverse effects. Acad J Environ Sci 4(3):047–054

    Google Scholar 

  • Kell S, Maxted N, Frese L, Iriondo JM, Ford-Lloyd B, Kristiansen K, Katsiosis A, Teeling C, Branca F (2004) In situ conservation of crop wild relatives: a methodology for identifying priority genetic reserve sites http://aegro.jki.bund.de/

  • Kell SP, Maxted N, Bilz M (2012a) European crop wild relative threat assessment: knowledge gained and lessons learnt. In: Maxted N, Dulloo ME, Ford-Lloyd BV, Frese L, Iriondo JM, Pinheiro de Carvalho MAA (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB Int, Wallingford, pp 218–242

    Chapter  Google Scholar 

  • Kell SP, Maxted N, Frese L, Iriondo JM (2012b) In situ conservation of crop wild relatives: a strategy for identifying priority genetic reserve sites. In: Maxted N, Dulloo ME, Ford-Lloyd BV, Frese L, Iriondo JM, de Carvalho MAA (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford, pp 7–19

    Google Scholar 

  • Kell SP, Ford-Lloyd BV, Brehm JM, Iriondo JM, Maxted N (2017) Broadening the base, narrowing the task: prioritizing crop wild relative taxa for conservation action. Crop Sci 57:1042–1058

    Article  Google Scholar 

  • Khoury CK, Castañeda-Álvarez NP, Dempewolf H, Eastwood RJ, Guarino L, Jarvis A, and Struik PC (2016) Measuring the state of conservation of crop diversity: a baseline for marking progress toward biodiversity conservation and sustainable development goals. Crop Wild Relatives project policy brief, 6 p. http://hdl.handle.net/10568/7448

  • Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Brief Funct Genom 11:38–50

    Article  CAS  Google Scholar 

  • Kilian B, Martin W, Salamini F (2010) Genetic diversity, evolution and domestication of wheat and barley in the fertile crescent. In: Glaubrecht M (ed) Evolution in action. Springer, Berlin/Heidelberg/Berlin/Heidelberg, pp 137–166

    Chapter  Google Scholar 

  • Kovacs MIP, Howes NK, Clarke JM, Leisle D (1998) Quality characteristics of durum wheat lines deriving high protein from Triticum dicoccoides (6b) substitution. J Cereal Sci 27:47–51

    Article  CAS  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L, Arroyo-Kalin M et al (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci USA 111:6139–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XW, Yang Y, Hentry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev Cambridge Philos Soc 90:157–166

    Article  PubMed  Google Scholar 

  • Lira R, Téllez O, Dávila P (2009) The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Gen Res Crop Evol 56(5):691–703

    Article  Google Scholar 

  • Livaja M, Steinemann S, Schön C-C (2016) Sunflower polygalacturonase-inhibiting proteins (HaPGIP) are genetically conserved in cultivated sunflower (Helianthus annuus L.) but diverse in wild species. Mol Breed 36:17

    Article  CAS  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  PubMed  Google Scholar 

  • Malik R et al (2003) Assessment of Aegilops tauschii for resistance to biotypes of wheat curl mite (Acari: Eriophyidae). J Econ Entomol 96:1329–1333

    Article  PubMed  Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda KS, Parliament K, Ibrokhim Y Abdurakhmonov YI, Siva P, Kumpatla PS (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci https://doi.org/10.3389/fpls.2018.00886

  • Martin TJ, Harvey TL, Bender CG, Seifers DL (1984) Control of Wheat streak mosaic virus with vector resistance in wheat. Phytopathology 72:963–964

    Article  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. Food and Agriculture Organization of the United Nations Commission on Genetic Resources for Food and Agriculture, Rome. Background study paper no 39

    Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury SL, Kell SP, Scholten MA (2006) Towards a definition of a crop wild relative. Biodiv Conserv 15:2673–2685

    Article  Google Scholar 

  • Maxted N, Scholten MA, Codd R, Ford-Lloyd BV (2007) Creation and use of a national inventory of crop wild relatives. Biol Conserv 140:142–159

    Article  Google Scholar 

  • Maxted N, Kell S, Magos Brehm J (2011) Options to promote food security: on farm management and in situ conservation of plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Maxted N, Avagyan A, Frese L, Iriondo JM, Magos Brehm J, Singer A, Kell SP (2015) ECPGR Concept for in situ conservation of crop wild relatives in Europe. Wild Species Conservation in Genetic Reserves Working Group. European Cooperative Programme for Plant Genetic Resources, Rome

    Google Scholar 

  • McKey D, Elias M, Pujol B, Duputie A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332

    Article  PubMed  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Rätsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Miller AJ, Gross BL (2011) From forest to field: Perennial fruit crop domestication. Am J Bot 98:1389–1414

    Article  PubMed  Google Scholar 

  • Mladenović Drinić S, Anđelković V, Ignjatović-Micić D (2011) Genetic diversity of maize landraces as a source of favorable traits. In: Genetic diversity, Book 2. Caliskan M (eds) published by InTech, pp 89–112

    Google Scholar 

  • Moore G (2015) Strategic pre-breeding for wheat improvement. Nat Plants 1(3):15018

    Article  CAS  PubMed  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: Advances and applications. Nat Rev Genet 13(2):85

    Article  CAS  PubMed  Google Scholar 

  • Myer L, Klemick H, Guarino L, Smale M, Br AHD, Sadiki M, Sthapit B (2000) A training guide for in situ conservation on-farm. Version 1. International Plan Genetic Resources Institute, Rome

    Google Scholar 

  • Nabhan GP (1990) Wild phaseolus ecogeography in the Sierra Madre Occidental, Mexico: Areographic techniques for targeting and conserving species diversity. Systematic and Ecogeographic Studies on Crop Genepools 5. International Board of Plant Genetic Resources (IBPGR)

    Google Scholar 

  • Neeraja NC, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard CYB, Septiningsih ME, Vergara G, Sanchez D, Xu K, Ismail MA, Mackill JD (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–778

    Article  CAS  PubMed  Google Scholar 

  • Nikolic A, Ignjatovic-Micic D, Dodig D, Andjelkovic V, Lazic-Jancic V (2012) Identification of QTLs for yield and drought-related traits in maize: assessment of their causal relationship. Biotechnol Biotechnol Equip 26(3):2952–2960

    Article  Google Scholar 

  • Nikolic A, Andjelkovic V, Dodig D, Mladenovic Drinić S, Kravic N, Ignjatovic-Micic D (2013) Identification of QTL-s for drought tolerance in maize, II: Yield and yield components. Genetika 45(2):341–350

    Article  Google Scholar 

  • Olsen KM, Wendel JF (2013a) Crop plants as models for understanding plant adaptation and diversification. Front Plant Sci 4:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen KM, Wendel JF (2013b) A bountiful harvest: Genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70

    Article  CAS  PubMed  Google Scholar 

  • Padulosi S, Heywood V, Hunter D, Jarvis A (2011) Underutilized species and climate change: current status and outlook. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley, Published by Blackwell Publishing Ltd., Oxford

    Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genet 155:309–322

    CAS  Google Scholar 

  • Park S, Kang T-S, Chang-Kil K, Han J-S, Kim S, Smith HR, Pike ML, Hirschi DK (2005) Genetic manipulation for enhancing calcium content in potato tuber. J Agric Food Chem 53:5598–5603

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ecol Evol 37:637–669

    Google Scholar 

  • Pavek J, Corsini D (2001) Utilization of potato genetic resources in variety development. Am J Potato Res 78:433–441

    Article  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol BA, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  PubMed  Google Scholar 

  • Porch T, Beaver J, Debouck D, Jackson S, Kelly J, Dempewolf H (2013) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3:433–461

    Article  Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1986) The first resource: wild species in the North American economy. Yale University Press, New Haven

    Book  Google Scholar 

  • Przulj N, Perovic D (2005) Molecular markers. II Microsatellites. A Periodical of Scientific Research on field and vegetable crops 41: 299–312

    Google Scholar 

  • Redden R, Yaday SS, Maxted N, Dullo ME, Guarino L, Smith P (2015) Crop wild relatives and climate change. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Rodrigues ASL, Andelman SJ, Bakarr MI et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  CAS  PubMed  Google Scholar 

  • Root BA, Price JT, Hall K (2003) Fingerprints of global warming on wild animals and plants. Nature 421:47–60

    Article  CAS  Google Scholar 

  • Rotenberry JT, Preston KL, Knick ST (2006) GIS-based niche modeling for mapping species habitat. Ecology 87:1458–1464

    Article  PubMed  Google Scholar 

  • Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, van Zonneveld M, Brown JW, Schmid K, Kilian B, Muehlbauer GJ, Stein N, Waugh R (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    Article  CAS  PubMed  Google Scholar 

  • Sanchez PL, Wing RA, Brar DS (2013) The wild relative of rice: genomes and genomics. In: Zhang Q, Wing R (eds) Genetics and genomics of rice. Springer, Berlin, pp 9–25

    Chapter  Google Scholar 

  • Scheelbeek PFD, Bird FA, Tuomisto HL, Green R, Harris FB, Joy EJM, Chalabi Z, Allen E, Haines A, Dangour AD (2018) Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc Natl Acad Sci U S A 115(26):6804–6809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK, Gowda CLL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci 4:309

    PubMed  PubMed Central  Google Scholar 

  • Sheehy JE, Elmido A, Centeno G, Pablico P (2005) Searching for new plant for climate change. J Agric Meteorol 60:463–468

    Article  Google Scholar 

  • Shen X, FGJr G, Grosser JW (2011) Immature embryo rescue and culture. Methods Mol Biol 710:75–92

    Article  CAS  PubMed  Google Scholar 

  • Skoric D, Jocic S (2004) Achievements of sunflower breeding at the IFVC in Novi Sad. In: Seiler GJ (ed). Proc. 16th Intl. Sunflower Conf., Fargo, ND, USA, 29 August–4 September 2004. Intl. Sunflower Assoc., Paris, France. II:441–448

    Google Scholar 

  • Smýkal P, Nelson NM, Berger DJ, von Wettberg JBE (2018) The Impact of Genetic Changes during Crop Domestication. Agronomy 8:119. https://doi.org/10.3390/agronomy8070119

    Article  Google Scholar 

  • Standley PC (2015) Teosinte in Honduras. Revista Ceiba 1:58–61

    Google Scholar 

  • Stolto S, Maxted N, Ford-Lloyd B, Kell SP, Dudley N (2006) Food stores: using protected areas to secure crop genetic diversity. The arguments for protection series. WWF, Gland

    Google Scholar 

  • Storfer A, Patton A, Fraik KA (2018) Navigating the interface between landscape genetics and landscape genomics. Front Gen 13(9):68. https://doi.org/10.3389/fgene.2018.00068

    Article  CAS  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327(5967):818–822

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira De Siqeira M, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huertas MA, Peterson AT, Phillips OL, Williams SE (2004a) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD, Cameroon A, Green RE et al (2004b) Extinction risks from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thormann I, Parra-Quijano M, Endresen D (2014) Predictive characterization of crop wild relatives and landraces: technical guidelines version 1. Biodiversity International, Rome

    Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tigchelaar M, Battisti DS, Naylor RL, Ray DK (2018) Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci U S A 115(26):6644–6649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • USGCRP, Hatfield J, Takle G, Grotjahn R, Holden P, Izaurralde RC, Mader T, Marshall E, Liverman D (2014) Ch. 6: Agriculture. Climate change impacts in the United States: the third national climate assessment. In: Melillo JM, Richmond T, Yohe GW (eds) U.S. Global Change Research Program, pp 150–174

    Google Scholar 

  • van de Wiel C, Schaart J, Niks R, Visser R (2010) Traditional plant breeding methods. Rep. 338. Wageningen UR Plant Breeding, Wageningen, the Netherlands

    Google Scholar 

  • van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez Gonzalez J, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci U S A 108: 1088-1092

    Google Scholar 

  • Vancetovic J, Mladenovic Drinic S, Babic M, Ignjatović-Micic D, Andjelkovic V (2010) Maize genebank collections as potentially valuable breeding material. Genetika 42(1):9–21

    Article  Google Scholar 

  • Vancetovic J, Ignjatovic-Micic D, Bozinovic S, Babic M, Filipovic M, Grcic N, Andjelkovic V (2013) Grain quality of drought tolerant accessions within a maize germplasm collection. Spanish J Agric Res 12(1):186–194

    Article  Google Scholar 

  • Vollbrech E, Sigmo B (2005) Amazing grass: developmental genetics of maize domestication. Biochem Soc Trans 33:1502–1506

    Article  Google Scholar 

  • van Vuuren DP, Sala OE, Pereira HM (2006) The future of vascular plant diversity under four global scenarios. Ecol Soc 11: 25

    Google Scholar 

  • Wambugu WP, Ndjiondjop M-N, Henry JR (2018) Role of genomics in promoting the utilization of plant genetic resources in genebanks. Brief Funct Genom 17:198–206

    Article  CAS  Google Scholar 

  • Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ (2005) Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet 110:1334–1346

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J (2006) QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genetic Res 8:93–104

    Article  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotech J 12:787–796

    Article  CAS  Google Scholar 

  • Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M (2015) Exome sequencing: current and future perspectives. G3: Genes Genomes Genet 5:1543–1550

    Article  Google Scholar 

  • Wright EM, Kelly JD (2011) Mapping QTL for seed yield and canning quality following processing of black bean (Phaseolus vulgaris L.). Euphytica 179:471–484

    Article  Google Scholar 

  • Wright S, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection of the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Xu Y (2010) Plant genetic resources: management, evaluation and enhancement. Mol Plant Breed (Wallingford, UK CABI):151–194

    Google Scholar 

  • Xu J, Zhao Q, Du P, Xu C, Wang B, Feng Q, Liu Q, Tang S, Gu M, Han B, Liang G (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genom 11:656

    Article  CAS  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu FY, Li X et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotech 30:105–111

    Article  CAS  Google Scholar 

  • Yadav SS, Redden R, Hatfield JL, Lotze-Campen H, Hall A (eds) (2011) Crop adaptation to climate change. Wiley-Blackwell, Chichester

    Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  CAS  PubMed  Google Scholar 

  • Zeng N, Yoon J (2009) Expansion of the world’s deserts due to vegetation-albedo feedback under global warming. Geophys Res Lett 36(17):17401

    Article  Google Scholar 

  • Zhang H, Mittal N, Leamy LJ, Barazani O, Song BH (2017) Back into the wild—apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10(1):5–24

    Article  PubMed  Google Scholar 

  • Zhao L, Dong Y, Liu B, Hao S, Wang K, Li X (2005) Establishment of a core collection for the Chinese annual wild soybean (Glycine soja). Chin Sci Bull 50:989–996

    Article  Google Scholar 

  • Zhou ZK, Jiang Y, Wang Z, Gou ZH, Lyu J, Li WY et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotech 33:408–414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jovovic, Z., Andjelkovic, V., Przulj, N., Mandic, D. (2020). Untapped Genetic Diversity of Wild Relatives for Crop Improvement. In: Salgotra, R., Zargar, S. (eds) Rediscovery of Genetic and Genomic Resources for Future Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-15-0156-2_2

Download citation

Publish with us

Policies and ethics