Skip to main content

Future Threats and Opportunities Facing Crop Wild Relatives and Landrace Diversity

  • Chapter
  • First Online:
Book cover Rediscovery of Genetic and Genomic Resources for Future Food Security

Abstract

Crop wild relatives and landraces possess novel alleles for biotic and abiotic stress resistance which can be used to develop varieties with superior traits. They can survive in different agro-environmental conditions as they have not undergone through genetic bottlenecks of domestication. They have broad genetic base with a wide range of allele diversity, thus contributing towards food safety and livelihood security. Due to natural calamities and anthropogenic activities, CWR and landraces are under threat of the risk of extinction as a result of deforestation, genetic erosion, industrialized agriculture, dryland destruction and desertification, urbanization and climate change. Thus, a coordinated global approach is needed for conservation of CWR and landraces as they play a major role in providing ecosystem services which are beneficial to humans. It is also necessary to screen novel genes in both wild plants that can be used in crop improvement programmes and threatened wild plants and landraces which need to be conserved. Plant genetic resources can be conserved either in situ or ex situ. Also, CWR and landraces have been utilized in crop improvement programmes through modern approaches like tissue culture, genetic engineering, AB-QTL and alien transfer of genes from wild relatives to chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AB-QTL:

Advanced backcross-QTL

BC:

Backcross

CWR:

Crop wild relatives

DNA:

Deoxyribose nucleic acid

FAO:

Food and Agriculture Organization

GE:

Genetic engineering

IPCC:

Intergovernmental Panel on Climate Change

PGR:

Plant genetic resources

PGRFA:

Plant genetic resources for food and agriculture

QTL:

Quantitative trait loci

T-DNA:

Transfer DNA

References

  • Azeez MA, Adubi AO, Durodola FA (2018) Landraces and Crop Genetic Improvement. https://doi.org/10.5772/intechopen.75944

    Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3:138–147

    Article  Google Scholar 

  • Bennett E (1970) Adaptation in wild and cultivated plant populations. In: Frankel OH, Bennett E (eds) Genetic Resources in Plants—Their Exploration and Conservation. International Biological Programme Handbook No. 11. Oxford: Blackwell, pp. 115–129

    Google Scholar 

  • Bettencourt E, Ford- Lloyd BV, Dias S (2008) Genetic erosion and genetic pollution of Crop wild relatives: the PGRForum perspective and achievements. CAB International, Crop wild relative conservation and use (eds N Maxted et al)

    Google Scholar 

  • Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Brar DS, Khush GS (1986) Wide hybridization and chromosome manipulation in cereals. In: Evans DH, Sharp WR, Ammirato PV (eds) Handbook of plant cell culture, vol 4, Techniques and applications. MacMillan Publish Co, New York, pp 221–263

    Google Scholar 

  • Brown AHD (1999) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: Brush S (ed.) Genes in the Field. International Plant Genetic Resources Institute, Rome, pp 29–48

    Google Scholar 

  • Brush SB (1995) In situ conservation of landraces in centers of crop diversity. Crop Sci 35:346–354

    Google Scholar 

  • Clarke HJ, Wilson JG, Kuo I, Lulsdorf MM, Mallikarjuna N, Kuo J, Siddique KHM (2006) Embryo rescue and plant regeneration in vitro of selfed chickpea (Cicer arietinum L.) and its wild annual relatives. Plant Cell Tissue Organ Cult 85:197–204

    Article  Google Scholar 

  • Cohen D, Ladizinsky G, Ziv M, Muehlbauer FJ (1984) Rescue of interspecific Lens hybrids by means of embryo culture. Plant Cell Tissue Organ Cult 3:343–347

    Article  CAS  Google Scholar 

  • Cox TS, Raup WJ, Gill BS (1994) Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343

    Article  Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    Article  CAS  PubMed  Google Scholar 

  • Dempewolf H, Eastwood RJ, Guarino L, Khoury C, Müller JV, Toll J (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agrocecol Sust Food Syst 38:369–377. https://doi.org/10.1080/21683565.870629

    Article  Google Scholar 

  • Deryng D, Sacks WJ, Barford CC, Ramanicutty N (2011) Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeocheni Cycles 25:GB2006. https://doi.org/10.1029/2009GB003765

    Article  CAS  Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Esquinas-Alcazar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nature 6:946–953

    CAS  Google Scholar 

  • Fan Y, Shabala S, Ma Y, Xu R, Zhou M (2015) Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (1998) The State of the World’s Plant Genetic Resources for Food and Agriculture. FAO, Rome

    Google Scholar 

  • FAO (1999) Report of the Technical Meeting on the Methodology of the World Information and Early Warning System on Plant Genetic Resources. Research Institute of Crop Production, Prague, Czech Republic. 21–23 June 1999. FAO, Rome, Italy

    Google Scholar 

  • FAO (2008) Climate change and Biodiversity for Food and Agriculture. Food and Agriculture organization of the United Nations, Rome

    Google Scholar 

  • Fischer I, Steige KA, Stephan W, Mboup M (2013) Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato. PLoS One 8(10):e78182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel OH, Brown AHD, Burdon JJ (1998) The Conservation of Plant Biodiversity, 2nd edn Cambridge: Cambridge University Press, pp 56–78

    Google Scholar 

  • Gan C (1989) Gene Gun Accelerates DNA-Coated Particles To Transform Intact Cells. The Scientist, 3(18):25

    Google Scholar 

  • Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292

    Article  Google Scholar 

  • Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genetic Research International. https://doi.org/10.1155/2015/431487

    Article  Google Scholar 

  • Guan RX, Qu Y, Guo Y, Yu LL, Liu Y, Jiang JH, Chen JG et al (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950

    Article  CAS  PubMed  Google Scholar 

  • Gupta D, Sharma SK (2005) Embryo-ovule rescue technique for overcoming post-fertilization barriers in interspecific crosses of Lens. J Lentil Res 2:27–30

    Google Scholar 

  • Hammer K, Knupffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces – two case studies. Genet Resour Crop Evol 43:329–336

    Article  Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Harlan JR, de JMJ W (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hawkes JG (1983) The Diversity of Crop Plants. Cambridge, MA: Harvard University Press, p. 102

    Book  Google Scholar 

  • Heywood V, Casas A, Ford-Lloyd B, Kell S, Maxted N (2007) Conservation and sustainable use of crop wild relatives. Agric Ecosyst Environ 121(3):245–255

    Article  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9(5):e97047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoyt E (1988) Conserving the Wild Relatives of Crops. IPGRI/IUCN/WWF, Rome

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Fourth assessment report. Climate change 2007 synthesis report. Intergovernmental Panel on Climate Change, Geneva

    Book  Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:13–23

    Article  Google Scholar 

  • Jauhar PP (2006) Cytogenetic architecture of cereal crops and their manipulation to fit human needs: opportunities and challenges. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement, vol 2, Cereals. CRC Taylor & Francis Press, Boca Raton, FL, pp 1–25

    Google Scholar 

  • Kastner T, Rivas MJI, Koch W, Nonhebel S (2012) Global changes in diets and the consequences for land requirements for food. Proc Natl Acad Sci 109:6868–6872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khush GS, Brar DS (1992) Overcoming the barriers in hybridization. Theor Appl Genet Monograph No.16:47–61

    Google Scholar 

  • Kihara H (1983) Origin and history of ‘Daruma’, a parental variety of Norin 10. Proc Sixth Int Wheat Genet Symp 6:13–19

    Google Scholar 

  • Kumar J, Pratap A (2016) Alien gene transfer: Challenges and opportunities. Alien Gene transfer in crop plants, Volume 1: Innovations, Methods and Risk assessment. Springer Science+ Business Media, New York. https://doi.org/10.1007/978-1-4614-8585-8_12. 2013

    Book  Google Scholar 

  • Labuschagne MT, Pretorius ZA, Grobbelaar B (2002) The influence of leaf rust resistance genes Lr29, Lr34, Lr35 and Lr37 on breadmaking quality in wheat. Euphytica 124:65–70

    Article  CAS  Google Scholar 

  • Li X, Takahashi T, Suzuki N, Kaiser HM (2011) The impact of climate change on maize yields in the United States and China. Agrie Syst 104:348–353

    Article  Google Scholar 

  • Linh LH, Linh TH, Xuan TD, Ham LH, Ismail AM, Khanh TD (2012) Molecular breeding to improve salt tolerance of rice (Oryza sativa L.) in the red river delta of Vietnam. Int J Plant Genomics 2012:9. https://doi.org/10.1155/2012/949038

    Article  CAS  Google Scholar 

  • Lobell DB, Sibley A, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2:186–189

    Article  Google Scholar 

  • Lopez PB (1994) A new plant disease: uniformity. Ceres 26:41–47

    Google Scholar 

  • Luck J, Spackmand M, Freemand A, Trçbicki P, Griffiths W, Finlay K, Chakraborty S (2011) Climate change and diseases of food crops. Plant Pathol 60:113–121

    Article  Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Saxena KB (2005) A new cytoplasmic nuclear male-sterility system derived from cultivated pigeonpea cytoplasm. Euphytica 142:143–148

    Article  Google Scholar 

  • Mallikarjuna N, Jadhav D, Reddy P (2006) Introgression of Cajanus platycarpus genome into cultivated pigeonpea, C. Cajan. Euphytica 149:161–167

    Article  CAS  Google Scholar 

  • Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: Status and needs. Commission on Genetic Resources for Food and Agriculture

    Google Scholar 

  • Maxted N, Hawkes JG, Ford-Lloyd BV, Williams JT 1997. A practical model for in situ genetic conservation. In: Plant genetic conservation: the in situ approach (eds. Maxted, N., Ford-Lloyd, B.V. and Hawkes, J.G.), Pp. 339–367. Chapman & Hall, London

    Chapter  Google Scholar 

  • Maxted N, Villa TCC, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant genetic resources 3:373–384

    Article  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15:2673–2685

    Article  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Kell SP (2008) Crop wild relatives: Establishing the context. Pages 3–30 in Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo ME, Turok J, eds. Crop Wild Relative Conservation and Use. CAB International Publishing

    Google Scholar 

  • Maxted N, Kell S, Brehm JM (2011) Options to promote food security: on-farm management and in situ conservation of plant genetic resources for food and agriculture. FAO

    Google Scholar 

  • Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives. Biodivers Conserv 13:663–684

    Article  Google Scholar 

  • Nable RO (1988) Resistance to boron toxicity amongst several barley and wheat cultivars: a preliminary examination of the resistance mechanism. Plant Soil 112:45–52

    Article  CAS  Google Scholar 

  • Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, Lehner B, Malcolm TR, Ricketts TH (2008) Global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci 105:9495–9500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council (1972) Genetic Vulnerability of Major Crops. (National Academy of Sciences, Washington, DC, 1972)

    Google Scholar 

  • Negri V, Tiranti B (2010) Effectiveness of in situ and ex situ conservation of crop diversity. What a Phaseolus vulgaris L. landrace case study can tell us. Genetica 138:985–998

    Article  PubMed  Google Scholar 

  • Ochatt SJ, Mousset-Declas C, Rancillac M (2000) Fertile pea plants regenerate from protoplast when calluses have not undergone endoreduplication. Plant Sci 156:177–183

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Wilson C, McCullum C, Huang R, Owen P, Flack J, Tran Q, Saltman T, Cliff B (1997) Economic and environmental benefits of biodiversity. Bioscience 47:747–757

    Article  Google Scholar 

  • Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, Baenziger PS, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161:1806–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plucknett D, Smith N, Williams J, Murthi Anishetty N (1987) Gene Banks and the World’s Food. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Qi XP, Li MW, Xie M, Liu X, Ni M, Shao GH, Song C et al (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5(1):920

    Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Rijal DK, Kadayat KB, Joshi KD, Sthapit BR (1998) Inventory of indigenous rainfed and aromatic rice landraces in Seti river valley, Pokhara, Nepal. LI-BIRD Technical Paper No. 2, ISSN 1561–1558

    Google Scholar 

  • Ruge-Wehling B, Linz A, Habeku A, Wehling P (2006) Mapping of RYMl6Hb, the second soilborne virus resistance gene introgressed from Hordeum bulbosum. Theor Appl Genet 113:867–673

    Article  CAS  PubMed  Google Scholar 

  • Sarker A, Erskine W (2003) Recent progress in the ancient lentil. J Agric Sci 144:19–29

    Article  Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci 104(50):19703–19708. https://doi.org/10.1073/pnas.0701976104

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoen DJ, Brown AHD (2001) The conservation of wild plant species in seed banks. Bioscience 51(11):960. https://doi.org/10.1641/0006

  • Sears ER (1956) The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sherchand KK, Adhikari NP, Khatiwada SP, Shrivastav AC, Bajracharya J, Joshi KD, Kadayat KB, Chaudhary M, Vhaudhary P, Vishwakarma SS, Yadav S (1998) Strengthening the scientific basis for in situ conservation of agrobiodiversity: Findings of site selection in Bara, Nepal, NP Working Paper No 2/98. NARC/LIBIRD/IPGRI

    Google Scholar 

  • Sitch LA (1990) Incompatibility barriers operating in crosses of Oryza sativa with related species and genera. In: Gustafson JP (ed) Genetic manipulation in plant improvement II. Plenum Press, New York, pp 77–94

    Chapter  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Stolton S, Maxted N, Ford-Lloyd B, Kell SP, Dudley N (2006) Food Stores: Using protected areas to secure crop genetic diversity. WWF Arguments for protection series. WWF, Gland Switzerland

    Google Scholar 

  • Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell and Environment, 27:1297–1308

    Article  CAS  Google Scholar 

  • Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A (2007) Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol 64:17–34

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277:1063–1066.https://doi.org/10.1126/science.277.5329.1063

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced back cross QTL analysis, a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • The TT, Latter BDH, McIntosh RA, Ellison FW, Brennan PS et al (1988) Grain yields of near – isogenic lines with added genes for stem rust resistance. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium, vol 2, Cambridge, UK, pp 901–906

    Google Scholar 

  • Thuiller T, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Nati Acad Sci USA 102(23):8245–8250

    Article  CAS  Google Scholar 

  • Tudge C (1988) Food Crops for the Future. Oxford:Basil Blackwell, p. 83

    Google Scholar 

  • U.S. Census Bureau. 2014. International database, June 2011 update. http://www.census.gov/population/international/data/idb/worldpoptotal.php. Accessed 15 Jan 2014

  • Vavilov N (1922) The law of homologous series in variation. J Genet 12:47–89

    Article  Google Scholar 

  • Vincent H, Amri A, Castaneda-Alvarez NP, Dempewolf H, Dulloo E, Guarino L, Hole D, Mba C, Toledo A, Maxted N (2019) Modeling of crop wild relative species identifies areas globally for in situ conservation. Communications Biology, 2:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Vollbrecht E, Sigmon B (2005) Amazing grass: developmental genetics of maize domestication. Biochem Soc Trans 33:1502–1506

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa M, Ae N (2001) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for exploitation in rice improvement. Plant Breed 120:43–48

    Article  CAS  Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of the Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus deficient soil. Theor Appl Genet 105:890–897

    Article  CAS  PubMed  Google Scholar 

  • Wood D, Lenne ´ JM (1997) The conservation of agrobiodiversity on-farm: questioning the emerging paradigm. Biodivers Conserv 6:109–129

    Article  Google Scholar 

  • World Conservation Monitoring Centre (1992) In global biodiversity: Status of the Earth’s Living Resources  (Groombridge, B., ed.), Chapman & Hall, London

    Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection of the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224

    Article  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang- Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene responsive-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    Article  CAS  Google Scholar 

  • Yau SK, Ryan J (2008) Boron toxicity tolerance in crops: a viable alternative to soil amelioration. Crop Sci 48:854–865

    Article  CAS  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

  • Zhang H, Mittal N, Leamy1 LJ, Barazani O, Song BH (2016) Back into the Wild – Apply Untapped Genetic Diversity of Wild Relatives for Crop Improvement. Evol Appl, 10(1): 5–24. https://doi.org/10.1111/eva.12434

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou YL, Uzokwe VNE, Zhang CH, Cheng LR, Wang L, Chen K, Gao XQ et al (2011) Improvement of bacterial blight resistance of hybrid rice in China using the Xa23 gene derived from wild rice (Oryza rufipogon). Crop Prot 30:637–644

    Article  CAS  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, C., Salgotra, R.K., Mahajan, G. (2020). Future Threats and Opportunities Facing Crop Wild Relatives and Landrace Diversity. In: Salgotra, R., Zargar, S. (eds) Rediscovery of Genetic and Genomic Resources for Future Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-15-0156-2_14

Download citation

Publish with us

Policies and ethics