Skip to main content

Crop Landraces: Present Threats and Opportunities for Conservation

  • Chapter
  • First Online:
Book cover Rediscovery of Genetic and Genomic Resources for Future Food Security

Abstract

Crop landraces are important source of novel alleles which can be utilized for improvement of desired crops. They have variable phenology and moderate edible yield. Landraces provide traits for more efficient nutrient uptake and utilization, as well as useful genes for adaptation to stressful environments such as water stress, salinity, and high temperatures for development of improved cultivars. However, since last few decades, modern agricultural practices have resulted in decline of diversity in crop landraces. Various environmental factors like genetic erosion and local cultivation practices have threaten the landrace diversity. To overcome these threats, certain conservation methods have been adapted, and these methods have been reported to play critical role in conserving crop landrace diversity. Furthermore, there is a need for proper documentation of the information available on remedial measures to cope up with the stress mediated by gene flow to crop landraces. Overall information generated may provide a framework to initiate different approaches for the crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRISPR:

Clustered regularly interspaced short palindromic repeats

CMT3:

Chromomethylase 3

DCL:

DICER-like enzymes

DNA:

Deoxyribonucleic acid

GM:

Genetically modified

GR:

Green Revolution

HYVs:

High-yielding varieties

IBPGR:

International Board for Plant Genetic Resources

LR:

Landraces

NGOs:

Nongovernmental organizations

RNA:

Ribonucleic acid

RNAi:

RNA interference

RISC:

RNA-induced silencing complex

siRNA:

Small interfering RNA

TALENs:

Transcription activator-like effector nucleases

ZNFs:

Zinc finger nucleases

References

  • Abay F, Bjørnstad A (2009) Specific adaptation of barley varieties in different locations in Ethiopia. Euphytica 167:181–195

    Article  Google Scholar 

  • Antofie MM, Sand MPC, Ciotea G, Iagrăru P (2010) Data sheet model for developing a red list regarding crop landraces in Romania. Ann Food Sci Technol 11(1):45–49

    Google Scholar 

  • Berg T (2009) Landraces and folk varieties: a conceptual reappraisal of terminology. Euphytica 166:423–430

    Article  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    Article  CAS  PubMed  Google Scholar 

  • Bonilla P et al (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76

    Google Scholar 

  • Brush SP (1995) In situ conservation of landraces in centres of crop diversity. Crop Sci 35:346–354

    Article  Google Scholar 

  • Camacho Villa TC, Maxted N, Scholten MA, Ford-Lloyd BV (2005) Defining and identifying crop landraces. Plant Genet Res Char Util 3:373–384

    Article  Google Scholar 

  • Carvalho M, Bebeli P, Bettencourt E, Costa G, Dias S et al (2012) Cereal landraces genetic resources in worldwide gene banks. A review. Agronomy for sustainable development. Springer/EDP Sciences/INRA 33(1):177–203

    Google Scholar 

  • Carpentier CL, Herrmann H (2003) Maize and biodiversity: the effects of transgenic maize in Mexico. Issues summary. Part of the Article 13 initiative on Maize and biodiversity: the effects of transgenic maize in Mexico. Accessed 19 April 2005 at http://www.cec.org/files/PDF//Issue_summary-e.pdf

  • Ceccarelli S, Grando S (2000) Barley landraces from the Fertile Crescent: a lesson for plant breeders. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. International Development Res Center, Boca Raton, pp 51–76

    Google Scholar 

  • Ceccarelli S (2012) Landraces: importance and use inbreeding and environmentally friendly agronomic systems. In: Maxted N, et al (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, pp 103–117

    Google Scholar 

  • Christian M, Qi Y, Zhang Y, Voytas D (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. Genes Genome Genet 3:1697–1705

    Google Scholar 

  • Christou P (2002) No credible scientific evidence is presented to support claims that transgenic DNA was introgressed into traditional maize landraces in Oaxaca, Mexico. Transgenic Res 11(1):3–5

    Article  Google Scholar 

  • Christiansen-Weniger F (1931) Bericht über eine Studienreise durch das ostanatolische Hochland. Zeitschr Züchtung A Pflanzenzüchtung 18:73–108

    Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Ellstrand NC (2001) Crop transgenes in natural populations. Abstr Pap Am Chem Soc 221(1–2):AGFD 37

    Google Scholar 

  • Esquinas-Alcázar J (2010) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nature 6:946–953

    Google Scholar 

  • Friis-Hansen E, Sthapit B (2000) Participatory approaches to the conservation and use of plant genetic resources. Intl Plant Gen Res Inst (IPGRI), Rome

    Google Scholar 

  • Frison AE et al (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253

    Article  Google Scholar 

  • Futuyma D (1998) Evolutionary biology, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688–694

    Article  CAS  Google Scholar 

  • Hammer K et al (1996) Estimating genetic erosion in landraces –two case studies. Genet Res Crop Evol 43:329–336

    Article  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296

    Article  CAS  PubMed  Google Scholar 

  • Harlan J (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Hawkes JG (1983) The diversity of crop plants. Harvard University Press, Cambridge, MA, p 102

    Book  Google Scholar 

  • Hussain B, Khan MA, Ali Q, Shaukat S (2012) Double haploid production is the best method for genetic improvement and genetic studies of wheat. Int J Agro Vet Med Sci 6(4):216–228

    Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838

    Article  CAS  PubMed  Google Scholar 

  • IBPGR (1980) A glossary of plant genetic resources terms. IBPGR Secretariat, Rome

    Google Scholar 

  • Joshi BK, Upadhyay MP, Gauchan D, Sthapit BR, Joshi KD (2004) Red listing of agricultural crop species, varieties and landraces. Nepal Agric Res J 5:73–80

    Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015) Small RNAs in plants: Recent development and application for crop improvement. Front in Plant Sci 6 https://doi.org/10.3389/fpls.2015.00208

  • Kaplinsky N, Braun D, Lisch D, Hay A, Hake S, Freeling M (2002) Maize transgene results in Mexico are artifacts. Nature 416:601–602

    Article  CAS  PubMed  Google Scholar 

  • Kumar A et al (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65:6265–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V et al (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res. Published online January 27, 2015 https://doi.org/10.1093/dnares/dsu046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HB, Zhou MX, Liu CJ (2009) A major QTL conferring crown rot resistance in barley and its association with plant height. Theor Appl Genet 118:903–910

    Article  CAS  PubMed  Google Scholar 

  • Lopez PB (1994) A new plant disease: uniformity. CERES 26:41–47

    Google Scholar 

  • Louette D (1999) Traditional management of seed and genetic diversity: what is a landrace? In: Brush SB (ed) Genes in the field: onfarm conservation of crop diversity. Lewis Publishers, CRDI/IPGRI, Boca Raton, pp 109–142

    Google Scholar 

  • Maluszynski M et al (2000) Officially released mutant varieties – the FAO/IAEA Database. Mutat Breed Rev 12:1–84

    Google Scholar 

  • Mayr E (1934) Die Bedeutung der alpinen Getreidelandsorten für die Pflanzenzüchtung and Stammesforschung mit besonderer Beschreibung der Landsorten in Nordtirol und Vorarlberg. Zeitsch f Züchtung A: Pflanzenzüchtung 19:195–228

    Google Scholar 

  • Metz M, Fütterer J (2002) Suspect evidence of transgenic contamination. Nature 416:600–601

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1937) Alpine Landsorten in ihrer Bedeutung für die praktische Züchtung. Forschungsdienst 4:162–166

    Google Scholar 

  • Moragues M, Zarco-Hernandez J, Moralejo MA, Royo C (2006) Genetic diversity of glutenin protein subunits composition in durum wheat landraces [Triticum turgidum ssp. turgidum convar. durum (Desf.) MacKey] from the Mediterranean basin. Genet Res Crop Evol 53:993–1002

    Article  CAS  Google Scholar 

  • Negri V (2003) Landraces in Central Italy: where and why they are conserved and perspectives for their on-farm conservation. Genet Res Crop Evol 50:871–885

    Article  Google Scholar 

  • Negri V, Maxted N, Vetelainen M (2009) European landrace conservation: an introduction. In: Vetelainen M, Negri V, Maxted N (eds) European landrace: on-farm conservation, management and use. Bioversity Technical Bulletin 15. Bioversity International, Rome, pp 1–22

    Google Scholar 

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larsson H, Pinheiro de Carvalho MAA, Rubiales D, Russell J, dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev 30: 237–269

    Article  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4):674–690

    Article  CAS  PubMed  Google Scholar 

  • Pecetti L, Doust MA, Calcagno L, Raciti CN, Boggini G (2001) Variation of morphological and agronomical traits, and protein composition in durum wheat germplasm from Eastern Europe. Genet Resour Crop Evol 48:609–620

    Article  Google Scholar 

  • Pistorius R (1997) Scientists, plants and politics. A history of the plant genetic resources movement. IPGRI, Rome

    Google Scholar 

  • Porfiri O, Costanza MT, Negri V (2009) Landrace inventories in Italy and the Lazio region case study. In: Veteläinen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity technical bulletin 15. Bioversity International, Rome, pp 117–123

    Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543

    Article  CAS  PubMed  Google Scholar 

  • Quist D, Chapela IH (2002) Reply. Nature 416:602

    Article  CAS  Google Scholar 

  • Ren ZH et al (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. Integrated approaches to sustain and improve plant production under drought stress. J Exp Bot 58(2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M et al (2008) Genotype by environment interactions in barley (Hordeum vulgare L): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica 163:231–247

    Article  CAS  Google Scholar 

  • Roychowdhury R, Tah J (2013) Mutagenesis—a potential approach for crop improvement. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement. Springer, USA, pp 149–187. https://doi.org/10.1007/978-1-4614-7028-1_4

    Chapter  Google Scholar 

  • Sarker A, Erskine W (2006) Recent progress in the ancient lentil. J Agric Sci 144:19–29

    Article  Google Scholar 

  • Sarker M, Adawy S, Smith CM (2008) Entomological and genetic variation of cultivated barley (Hordeum vulgare) from Egypt. Arch Phytopathol Plant Prot 41:526–536

    Article  CAS  Google Scholar 

  • Saxena S, Singh AK (2006) Revisit to definitions and need for inventorization or registration of landrace, folk, farmers’ and traditional varieties. Curr Sci 91:1451–1454

    Google Scholar 

  • Shan Q, Wanp Y, Li J, Zhang Y et al (2013) Targeted genome modification of crop plants using a CRISPR–Cas system. Nat Biotech 31:686–688

    Article  CAS  Google Scholar 

  • Sharma S, Shahzad A, da Silva JAT (2013) Synseed technology – a complete synthesis. Biotech Adv 31:186–207

    Article  CAS  Google Scholar 

  • Sijen T, Kooter JM (2000) Post-transcriptional gene-silencing: RNAs on the attack or on the defense. BioEssays 22(6):520–531

    Article  CAS  PubMed  Google Scholar 

  • Snow AA, Moran-Palma P (1997) Commercialization of transgenic plants: potential ecological risks. BioScience 47:86–96

    Article  Google Scholar 

  • Sutherland WJ, Woodroof HJ (2009) The need for environmental horizon scanning. Trends Ecol Evol 24:523–527

    Article  PubMed  Google Scholar 

  • Teklu Y, Hammer K (2009) Diversity of Ethiopian tetraploid wheat germplasm: breeding opportunities for improving grain yield potential and quality traits. Plant Genet Resour 7:1–8

    Article  Google Scholar 

  • Thompson MJ et al (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Tsegaye S, Tesemma T, Belay G (1996) Relationships among tetraploid wheat (Triticum turgidum L.) landrace populations revealed by isozyme markers and agronomic traits. Theor Appl Genet 93:600–605

    Article  CAS  PubMed  Google Scholar 

  • Van de Wouw M et al (2010) Genetic diversity trends in twentieth century crop cultivars: a meta-analysis. Theor Appl Genet 120:1241–1252

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hintum TJL, Ellings A (1991) Assessment of glutenin and phenotypic diversity of Syrian durum wheat landraces in relation to their geographical regions. Euphytica 55:209–215

    Article  Google Scholar 

  • Vaucheret H (2008) Plant Argonautes. Trends Plant Sci 13(7):350–358

    Article  CAS  PubMed  Google Scholar 

  • Von Rünker K (1908) Die Systematischeeinteilung und Benen-ung der Getreidesortenfu¨rpr aktische Zwecke. Jahrbuch der Deutschenlandwirtschafts-Gesellschaft 23:137–167

    Google Scholar 

  • Waugh R, Leader DJ, McCallum N, Caldwell D (2006) Harvesting the potential of induced biological diversity. Trends Plant Sci 11(2):71–79

    Article  CAS  PubMed  Google Scholar 

  • Wessler SR (2006) Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci 103(47):17600–11760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams M, Clark G, Sathasivan K, Islam AS (2004) RNA interference and its application in crop improvement. Plant Tissue Cult Biotechnol 1:18. https://extension.colostate.edu/topic-areas/agriculture/genetically-modified-gm-crops-techniques-and-applications-0-710

    Google Scholar 

  • World Conservation Monitoring Centre (1992) In: Groombridge B (ed) In global biodiversity: status of the Earth’s living resources. Chapman & Hall, London

    Google Scholar 

  • Zeven AC (1975) Domesticatie en evolutie van de kultuurplant. Wageningen Agricultural University, Dept of Plant Breeding. Mimeographed Lecture Notes pp 177

    Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, R.A., Sharma, A., Mahajan, R. (2020). Crop Landraces: Present Threats and Opportunities for Conservation. In: Salgotra, R., Zargar, S. (eds) Rediscovery of Genetic and Genomic Resources for Future Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-15-0156-2_13

Download citation

Publish with us

Policies and ethics