Skip to main content

Power and Delay Comparison of 7:3 Compressor Designs Based on Different Architectures of XOR Gate

  • Conference paper
  • First Online:
Inventive Communication and Computational Technologies

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 89))

  • 2282 Accesses

Abstract

This paper presents the power and delay comparison of 7:3 compressor circuit designed using three different architectures of XOR gate which are based upon mirror circuit, 4-transistor, (4-T) and transmission gate (TG). The compressors have been implemented in transistor level at 180 nm technology and the functionality is verified in Cadence-spectre. Among the 7:3 compressors, the design utilizing the TG-based XOR gate is exhibiting least power consumption and the least delay is exhibited by the design which is based upon mirror circuit-based XOR gate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dandapat A, Goshal S, Sarkar P, Mukhopadhyay D (2010) A 1.2 ns 16 × 16 bit binary multiplier using high speed compressors. Int J Elect Electron Eng 4: 485–490

    Google Scholar 

  2. Menon R, Radhakrishnan D (2006) High performance 5:2 compressor architecture. In: IEE Proc. Circuits, Devices, Syst. vol 153, pp 447–452

    Google Scholar 

  3. Veeramachaneni S, Krishna KM, Avinash L, Puppala SR, Srinivas MB (2007) Novel architecture for high-speed and low power 3-2, 4-2, and 5-2 compressors. In: IEEE Int. Conf. VLSI Design, pp 324–329

    Google Scholar 

  4. Siliveru A, Bharati M (2013) Design of compressor based multiplier using degenerate pass transistor logic. Int J Eng Trends Technol 4:896–900

    Google Scholar 

  5. Lakshmi GS, Fatima K, Madhavi BK (2016) Compressor based 8 × 8 bit vedic multiplier using reversible logic. In: Int. Conf. Devices, Circuits, Syst. pp 174–178 (2016)

    Google Scholar 

  6. Ravi N, Prasad TJ, Umamahesh M, Rao TS (2010) Performance evaluation of high speed compressors for high speed multipliers using 90 nm technology. In: Recent Adv. Space Technol. Serv. Climate Change. pp 189–193 (2010)

    Google Scholar 

  7. Marimuthu R, Rezinold YE, Mallick PS (2017) Design and analysis of multiplier using appropriate 15-4 compressor. IEEE Access 5:1027–1036

    Article  Google Scholar 

  8. Kumar S, Kumar M (2014) 4-2 Compressor design with new XOR-XNOR module. In: Int. Conf. Adv. Comput. Comm. Technol. pp 106–111 (2014)

    Google Scholar 

  9. Uyemura JP (2002) CMOS logic circuit design. Kluwer Academic Publishers

    Google Scholar 

  10. Multiple Operand Addition. https://pubweb.eng.utah.edu/~cs6830/Slides/chap3x2.pdf

  11. Navi K, Maeen M, Foroutan V, Timarchi S, Kavehei O (2009) A novel low-power full-adder cell for low voltage. Integration, VLSI J 42:457–467

    Article  Google Scholar 

  12. Shams AM, Darwish TK, Bayoumi MA (2002) Performance analysis of low-power 1-bit CMOS full adder cells. IEEE Trans VLSI Syst 10:20–29

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Ministry of Electronics and Information Technology, Government of India, under Visvesvaraya Ph.D. Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekib Uddin Ahmed .

Editor information

Editors and Affiliations

Appendix

Appendix

The Karnaugh map for the output \( q_{b1} \) is shown below:

figure a

Considering the circled minterms:

$$ \begin{aligned} q_{b1} & = \left[ {x_{4} x_{3} + x_{5} x_{3} + x_{5} x_{4} + x_{5} x_{4} x_{3} + x_{6} x_{3} + x_{6} x_{4} + x_{6} x_{4} x_{3} + x_{6} x_{5} + x_{6} x_{5} x_{3} + x_{6} x_{5} x_{4} } \right]\overline{{q_{b2} }} \\ & = \left[ {x_{4} x_{3} + x_{5} x_{3} + x_{5} x_{4} \left( {1 + x_{3} } \right) + x_{6} x_{3} + x_{6} x_{4} \left( {1 + x_{3} } \right) + x_{6} x_{5} \left( {1 + x_{3} + x_{4} } \right)} \right]\overline{{q_{b2} }} \\ & = \left[ {x_{4} x_{3} + x_{5} x_{3} + x_{5} x_{4} + x_{6} x_{3} + x_{6} x_{4} + x_{6} x_{5} } \right]\overline{{q_{b2} }} \\ & = \left[ {x_{6} x_{5} + x_{4} x_{3} + x_{5} \left( {x_{3} + x_{4} } \right) + x_{6} \left( {x_{3} + x_{4} } \right)} \right]\overline{{q_{b2} }} \\ & = \left[ {x_{6} x_{5} + x_{4} x_{3} + x_{5} \left( {x_{3} + x_{4} } \right) + x_{6} \left( {x_{3} + x_{4} } \right)} \right]\overline{{q_{b2} }} \\ \end{aligned} $$
(8)
$$ q_{b1} = \left[ {x_{6} x_{5} + x_{4} x_{3} + \left( {x_{3} + x_{4} } \right)\left( {x_{5} + x_{6} } \right)} \right]\overline{{q_{b2} }} $$
(9)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, R.U., Saha, P. (2020). Power and Delay Comparison of 7:3 Compressor Designs Based on Different Architectures of XOR Gate. In: Ranganathan, G., Chen, J., Rocha, Á. (eds) Inventive Communication and Computational Technologies. Lecture Notes in Networks and Systems, vol 89. Springer, Singapore. https://doi.org/10.1007/978-981-15-0146-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0146-3_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0145-6

  • Online ISBN: 978-981-15-0146-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics