Skip to main content

Special Frequency Quadrilaterals and an Application

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1069))

Included in the following conference series:

Abstract

Given a quadrilateral ABCD in \(K_n\) and the distances of edges, the special frequency quadrilaterals are derived as two of the three sum distances \(d(A,B)\,+\,d(C,D)\), \(d(A,C)\,+\,d(B,D)\), and \(d(A,D)\,+\,d(B,C)\) are equal. A probability model formulated based on the special frequency quadrilaterals implies the edges in the optimal Hamiltonian cycle are different from the other edges in \(K_n\). Christofides proposed a \(\frac{3}{2}\)-approximation algorithm for metric traveling salesman problem (TSP) that runs in \(O(n^3)\) time. Cornuejols and Nemhauser constructed a family of graphs where the performance ratio of Christofides algorithm is exactly \(\frac{3}{2}\) in the worst case. We apply the special frequency quadrilaterals to the family of metric TSP instances for cutting the useless edges. In the end, the complex graph is reduced to a simple graph where the optimal Hamiltonian cycle can be detected in O(n) time, where \(n\ge 4\) is the number of vertices in the graph.

The authors acknowledge the funds supported by the Fundamental Research Funds for the Central Universities (No. 2018MS039 and No. 2018ZD09).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson, D.S., McGeoch, L.A.: The Traveling Salesman Problem and Its Variations. Combinatorial Optimization, 1st edn. Springer Press, London (2004). https://doi.org/10.1007/b101971

    Book  Google Scholar 

  2. Karp, R.: On the computational complexity of combinatorial problems. Networks 5(1), 45–68 (1975)

    Article  MATH  Google Scholar 

  3. Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R.: Dynamic programming treatment of the traveling salesman problem. J. ACM 9(1), 61–63 (1962)

    Article  MATH  Google Scholar 

  5. Carpaneto, C.G., Dell’Amico, M., Toth, P.: Exact solution of large-scale, asymmetric traveling salesman problems. ACM Trans. Math. Softw. 21(4), 394–409 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Klerk, E.D., Dobre, C.: A comparison of lower bounds for the symmetric circulant traveling salesman problem. Discrete Appl. Math. 159(16), 1815–1826 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Levine, M.S.: Finding the right cutting planes for the TSP. J. Exp. Algorithmics 5, 1–16 (2000)

    Article  MATH  Google Scholar 

  8. Applegate, D., et al.: Certification of an optimal TSP tour through 85900 cities. Oper. Res. Lett. 37(1), 11–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Thomas, H.C., Charles, E.L., Ronald, L.R., Clifford, S.: Introduction to Algorithm, 2nd edn. China Machine Press, Beijing (2006)

    Google Scholar 

  10. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, DTIC Document (1976)

    Google Scholar 

  11. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011), pp. 560–569. IEEE, Palm Springs (2011)

    Google Scholar 

  12. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sharir, M., Welzl, E.: On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36(3), 695–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heidi, G.: Enumerating all Hamilton cycles and bounding the number of Hamiltonian cycles in 3-regular graphs. Electr. J. Comb. 18(1), 1–28 (2011)

    MATH  Google Scholar 

  15. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The traveling salesman problem in bounded degree graphs. ACM Trans. Algorithms 8(2), 1–18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algorithms Appl. 11(1), 61–81 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liśkiewicz, M., Schuster, M.R.: A new upper bound for the traveling salesman problem in cubic graphs. J. Discrete Algorithms 27, 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aggarwal, N., Garg, N., Gupta, S.: A 4/3-approximation for TSP on cubic 3-edge-connected graphs. http://arxiv.org/abs/1101.5586

  19. Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: The traveling salesman problem on cubic and subcubic graphs. Math. Program. 144(1), 227–245 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Correa, J.R., Larré, O., Soto, J.A.: TSP tours in cubic graphs: beyond 4/3. SIAM J. Discrete Math. 29(2), 915–939 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Borradaile, G., Demaine, E.D., Tazari, S.: Polynomial-time approximation schemes for subset-connectivity problems in bounded-genus graphs. Algorithmica 68(2), 287–311 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gharan, S.O., Saberi, A.: The asymmetric traveling salesman problem on graphs with bounded genus. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 1–12. ACM (2011)

    Google Scholar 

  23. Jonker, R., Volgenant, T.: Nonoptimal edges for the symmetric traveling salesman problem. Oper. Res. 32(4), 837–846 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hougardy, S., Schroeder, R.T.: Edge elimination in TSP instances. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 275–286. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_23

    Chapter  MATH  Google Scholar 

  25. Wang, Y., Remmel, J.B.: A binomial distribution model for the traveling salesman problem based on frequency quadrilaterals. J. Graph Algorithms Appl. 20(2), 411–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Y., Remmel, J.B.: An iterative algorithm to eliminate edges for traveling salesman problem based on a new binomial distribution. Appl. Intell. 48(11), 4470–4484 (2018)

    Article  Google Scholar 

  27. Wang, Y.: An approximate method to compute a sparse graph for traveling salesman problem. Expert Syst. Appl. 42(12), 5150–5162 (2015)

    Article  Google Scholar 

  28. Cornuejols, G., Nemhauser, G.L.: Tight bounds for Christofides’ traveling salesman heuristic. Math. Program. 14(1), 116–121 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Y., Remmel, J.: A method to compute the sparse graphs for traveling salesman problem based on frequency quadrilaterals. In: Chen, J., Lu, P. (eds.) FAW 2018. LNCS, vol. 10823, pp. 286–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78455-7_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. (2019). Special Frequency Quadrilaterals and an Application. In: Sun, X., He, K., Chen, X. (eds) Theoretical Computer Science. NCTCS 2019. Communications in Computer and Information Science, vol 1069. Springer, Singapore. https://doi.org/10.1007/978-981-15-0105-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0105-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0104-3

  • Online ISBN: 978-981-15-0105-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics