Skip to main content

Reactivity Controlled Compression Ignition: An Advanced Combustion Mode for Improved Energy Efficiency

  • Chapter
  • First Online:
Energy Efficiency in Mobility Systems

Abstract

This chapter reviews reactivity controlled compression ignition (RCCI), which is an advanced combustion mode. RCCI is capable of improving thermal efficiency and reducing nitrogen oxides (NOx) and soot emission. However, it has high specific fuel consumption, unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions, and thus requiring appropriate strategies. The effects of some strategies were found to influence advanced combustion phase and reduced UHC and CO emissions to a certain extent while maintaining RCCI reputability or otherwise. The use of bio-based low reactivity fuels (LRF) in RCCI combustion serves as a substitute for gasoline in reactivity stratification. Depending on the LRF used, utilization of biodiesel enables controlled combustion phase, extended load and significantly reduce soot and CO emissions, but it increases NOx and UHC emissions through NOx is compromised with biodiesel blends. The use of biodiesel can serve a greater advantage over conventional diesel when appropriate LRF and strategy are used especially for medium to higher blends or pure biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Qian, H. Li, D. Han, L. Ji, Z. Huang, X. Lu, Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of N-heptane. Energy 111, 1003–16 (2016)

    Article  Google Scholar 

  2. A.K. Agarwal, P.S. Akhilendra, K.R. Maurya, Evolution, challenges and path forward for low temperature combustion engines. Progr. Energy Combust. Sci. 61, 1–56 (2017)

    Article  Google Scholar 

  3. S. Molina, A. García, J.M. Pastor, E. Belarte, I. Balloul, Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine. Appl. Energy 143, 211–27 (2015)

    Article  Google Scholar 

  4. J. Li, W. Yang, D. Zhou, Review on the management of RCCI engines. Renew. Sustain. Energy Rev. 69, 65–79 (2017)

    Article  Google Scholar 

  5. S.L. Kokjohn, R.M. Hanson, D.A. Splitter, R.D. Reitz, Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. Intl. J. Eng. Res. Spec. Issue Pap. 12, 209–26 (2010)

    Article  Google Scholar 

  6. J. Benajes, S. Molina, A. García, E. Belarte, M. Vanvolsem, An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Appl. Therm. Eng. 63, 66–76 (2014)

    Article  Google Scholar 

  7. I.B. Dalha, M.A. Said, Z.A.A. Karim, F. Firmansyah, Strategies and methods of RCCI combustion: a review, in AIP Conference Proceedings 2035, vol. 030006, pp. 030006-1–5, 2018

    Google Scholar 

  8. M. Mikulski, C. Bekdemir, Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine—a simulation study. Appl. Energy 191, 689–708 (2017)

    Article  Google Scholar 

  9. M. Nazemi, M. Shahbakhti, Modeling and analysis of fuel injection parameters for combustion and performance of an RCCI engine. Appl. Energy 165, 135–150 (2016)

    Article  Google Scholar 

  10. C. Zhang, L. Xue, Y. Li, Combustion characteristics and operation range of a RCCI combustion engine fueled with direct injection N-heptane and pipe injection. Energy 125, 439–448 (2017)

    Article  Google Scholar 

  11. L. Tong, H. Wang, Z. Zheng, R. Reitz, M. Yao, Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel 181, 878–886 (2016)

    Article  Google Scholar 

  12. P. Kamran, K.S. Rahim, A. Ehsan, K.I. Behrouz, S. Mehdi, J.D. Naber, Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine. Appl. Energy 199, 430–446 (2017)

    Article  Google Scholar 

  13. A. Amoresano, C. Allouis, M. Di Santo, P. Iodice, G. Quaremba, V. Niola, Experimental characterization of a pressure swirl spray by analyzing the half cone angle fluctuation. Exp. Thermal Fluid Sci. 94, 122–33 (2018)

    Article  Google Scholar 

  14. A. Yousefi, M. Birouk, Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load. Appl. Energy 189, 492–505 (2017)

    Article  Google Scholar 

  15. A. Kakaee, P. Rahnama, A. Paykani, CFD study of reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine. Periodica Polytechnica Transp. Eng. 43, 177–83 (2015)

    Article  Google Scholar 

  16. H. Wang, X. Zhao, L. Tong, M. Yao, The effects of DI fuel properties on the combustion and emissions characteristics of RCCI combustion. Fuel 227, 457–68 (2018)

    Article  Google Scholar 

  17. Y. Li, M. Jia, Y. Liu, M. Xi, Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine. Appl. Energy 106, 184–97 (2013)

    Article  Google Scholar 

  18. J. Li, X. Ling, D. Liu, W. Yang, D. Zhou, Numerical study on double injection techniques in a gasoline and biodiesel fueled RCCI (reactivity controlled compression ignition) engine. Appl. Energy 211, 382–92 (2018)

    Article  Google Scholar 

  19. J. Benajes, S. Molina, A. García, J. Monsalve-Serrano, Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Convers. Manag. 99, 193–209 (2015)

    Article  Google Scholar 

  20. Y. Qian, Y. Zhang, X. Wang, X. Lu, Particulate matter emission characteristics of reactivity controlled compression ignition engine fueled with biogas/diesel dual fuel. J. Aerosol Sci. 113, 166–177 (2017)

    Article  Google Scholar 

  21. X. Wang, Y. Qian, Q. Zhou, X. Lu, Modulated diesel fuel injection strategy for efficient-clean utilization of low-grade biogas. Appl. Therm. Eng. 107, 844–52 (2016)

    Article  Google Scholar 

  22. J. Li, W.M. Yang, H. An, D. Zhao, Effects of fuel ratio and injection timing on gasoline/biodiesel fueled RCCI engine: a modeling study. Appl. Energy 155, 59–67 (2015)

    Article  Google Scholar 

  23. J. Liu, F. Yang, H. Wang, M. Ouyang, Numerical study of hydrogen addition to DME/CH4 dual fuel RCCI engine. Int. J. Hydrogen Energy 37, 8688–97 (2012)

    Article  Google Scholar 

  24. H. Liu, Q. Tang, X. Ran, X. Fang, M. Yao, Optical diagnostics on the reactivity controlled compression ignition (RCCI) with micro direct-injection strategy. Proc. Combust. Inst. 000, 1–9 (2017)

    Google Scholar 

  25. D.Z. Zhou, W.M. Yang, H. An, J. Li, Application of CFD-chemical kinetics approach in detecting RCCI engine knocking fueled with biodiesel/methanol. Appl. Energy 145, 255–64 (2015)

    Article  Google Scholar 

  26. Y. Li, M. Jia, Y. Chang, Z. Xu, G. Xu, H. Liu, Principle of determining the optimal operating parameters based on fuel properties and initial conditions for RCCI engines. Fuel 216, 284–95 (2018)

    Article  Google Scholar 

  27. Z. Xu, M. Jia, Y. Li, Y. Chang, G. Xu, L. Xu, Computational optimization of fuel supply, syngas composition, and intake conditions for a syngas/diesel RCCI engine. Fuel 234, 120–34 (2018)

    Article  Google Scholar 

  28. Z. Zheng, M. Xia, H. Liu, R. Shang, G. Ma, M. Yao, Experimental study on combustion and emissions of N-Butanol/biodiesel under both blended fuel mode and dual fuel RCCI mode. Fuel 226, 240–51 (2018)

    Article  Google Scholar 

  29. Z. Zheng, M. Xia, H. Liu, X. Wang, M. Yao, Experimental study on combustion and emissions of dual fuel RCCI mode fueled with biodiesel/n-Butanol, biodiesel/2,5-dimethylfuran and biodiesel/ethanol. Energy 148, 824–38 (2018)

    Article  Google Scholar 

  30. Y. Li, M. Jia, Y. Chang, Y. Liu, M. Xie, T. Wang, L. Zhou, Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel. Energy 65, 319–32 (2014)

    Article  Google Scholar 

  31. Y. Wang, M. Yao, T. Li, W. Zhang, Z. Zheng, A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads. Appl. Energy 175, 389–402 (2016)

    Article  Google Scholar 

  32. V.B. Pedrozo, I. May, T.D.M. Lanzanova, H. Zhao, Potential of internal EGR and throttled operation for low load extension of ethanol—diesel dual-fuel reactivity controlled compression ignition combustion on a heavy-duty engine. Fuel 179, 391–405 (2016)

    Article  Google Scholar 

  33. J.H. Lim, R.D. Reitz, High load (21 Bar IMEP) dual fuel RCCI combustion using dual direct injection. J. Eng. Gas Turbines Power 136, 101–514 (2014)

    Article  Google Scholar 

  34. H. Liu, G. Ma, B. Hu, Z. Zheng, M. Yao, Effects of port injection of hydrous ethanol on combustion and emission characteristics in dual-fuel reactivity controlled compression ignition (RCCI) mode. Energy 145, 592–602 (2018)

    Article  Google Scholar 

  35. M. Wissink, R.D. Reitz, Direct dual fuel stratification, a path to combine the benefits of RCCI and PPC. SAE Intl. J. Eng. 8, 01–0856 (2015)

    Article  Google Scholar 

  36. C. Kavuri, J. Paz, S.L. Kokjohn, A comparison of reactivity controlled compression ignition (RCCI) and gasoline compression ignition (GCI) strategies at high load, low speed conditions. Energy Conver. Manag. 127, 324–41 (2016)

    Article  Google Scholar 

  37. Firmansyah, A.A.A. Rasheed, M. Heikal, Z.A.A. Karim, Diesel/CNG mixture autoignition control using fuel composition and injection gap. Energies 10, 1639 (2017)

    Article  Google Scholar 

  38. J.H. Lim, R. Reitz, Improving high efficiency reactivity controlled compression ignition combustion with diesel and gasoline direct injection. Proc. Inst. Mech. Eng. Part D, J. Automob. Eng. 227, 17–30 (2013)

    Article  Google Scholar 

  39. A. García, J. Monsalve-Serrano, R.V. Rückert, M.E. Santos Martins, Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the world harmonized vehicle cycle (WHVC). Energy Convers. Manag. 149, 263–74 (2017)

    Article  Google Scholar 

  40. J. Benajes, A. García, J. Monsalve-Serrano, S.R. Lago, Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy 157, 19–30 (2018)

    Article  Google Scholar 

  41. G. Xu, M. Jia, Y. Li, Y. Chang, T. Wang, Potential of reactivity controlled compression ignition (RCCI) combustion coupled with variable valve timing (VVT) strategy for meeting euro 6 emission regulations and high fuel efficiency in a heavy-duty diesel engine. Energy Convers. Manag. 171, 683–98 (2018)

    Article  Google Scholar 

  42. A. Paykani, A. Kakaee, P. Rahnama, R.D. Reitz, Progress and recent trends in reactivity-controlled compression ignition engines. Int. J. Engine Res. 17, 481–524 (2016)

    Article  Google Scholar 

  43. M.B. Luong, R. Sankaran, G.H. Yu, S.H. Chung, C.S. Yoo, On the effect of injection timing on the ignition of lean PRF/Air/EGR mixtures under direct dual fuel stratification conditions. Combust. Flame 183, 309–21 (2017)

    Article  Google Scholar 

  44. J. Li, W.M. Yang, D.Z. Zhou, Modeling study on the effect of piston bowl geometries in a gasoline/biodiesel fueled RCCI engine at high speed. Energy Convers. Manag. 112, 359–68 (2016)

    Article  Google Scholar 

  45. A. Gharehghani, R. Hosseini, M. Mirsalim, S.A. Jazayeri, An experimental study on reactivity controlled compression ignition engine fueled with biodiesel/natural gas. Energy 89, 558–67 (2015)

    Article  Google Scholar 

  46. S.S. Kalsi, K.A. Subramanian, Experimental investigations of effects of hydrogen blended CNG on performance, combustion and emissions characteristics of a biodiesel fueled reactivity controlled compression ignition engine. Intl. J. Hydr. Energy 42, 4548–60 (2017)

    Article  Google Scholar 

  47. D.Z. Zhou, W.M. Yang, H. An, J. Li, C. Shu, A numerical study on RCCI engine fueled by biodiesel/methanol. Energy Convers. Manag. 89, 798–807 (2015)

    Article  Google Scholar 

  48. Z.M. Isik, A. Hüseyin, Analysis of ethanol RCCI application with safflower biodiesel blends in a high load diesel power generator. Fuel 184, 248–60 (2016)

    Article  Google Scholar 

  49. S. No, Application of bio-butanol in advanced CI engines—a review. Fuel 183, 641–58 (2016)

    Article  Google Scholar 

  50. D.K. Jamuwa, D. Sharma, S.L. Soni, Experimental investigation of performance, exhaust emission and combustion parameters of compression ignition engine with varying ethanol energy fractions. Energy 127, 544–57 (2017)

    Article  Google Scholar 

  51. E.G. Giakoumis, C.D. Rakopoulos, A.M. Dimaratos, D.C. Rakopoulos, Exhaust emissions with ethanol or N-butanol diesel fuel blends during transient operation: a review. Renew. Sustain. Energy Rev. 17, 170–90 (2013)

    Article  Google Scholar 

  52. M. Farzaneh-gord, M.S. Pahlevan-zadeh, Measurement of methane emission into environment during natural gas purging process. Environ. Pollut. 242, 2014–26 (2018)

    Article  Google Scholar 

  53. G.D. Blasio, G. Belgiorno, C. Beatrice, Effects on performances, emissions and particle size distributions of a dual fuel (methane-diesel) light-duty engine varying the compression ratio. Appl. Energy 204, 726–40 (2017)

    Article  Google Scholar 

  54. N. Duic, M. Vujanovic, G. Krajac, Sustainable development of energy, water and environment systems for future energy technologies and concepts. Energy Convers. Manag. 125, 1–14 (2016)

    Article  Google Scholar 

  55. P. Rahnama, A. Paykani, R.D. Reitz, A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine. Appl. Energy 193, 182–98 (2017)

    Article  Google Scholar 

  56. P. Rahnama, A. Paykani, V. Bordbar, R.D. Reitz, A numerical study of the effects of reformer gas composition on the combustion and emission characteristics of a natural gas/diesel rcci engine enriched with reformer gas. Fuel 209, 742–53 (2017)

    Article  Google Scholar 

  57. V.K. Shahir, C.P. Jawahar, P.R. Suresh, Comparative study of diesel and biodiesel on ci engine with emphasis to emissions—a review. Renew. Sustain. Energy Rev. 45, 686–97 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim B. Dalha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalha, I.B. et al. (2020). Reactivity Controlled Compression Ignition: An Advanced Combustion Mode for Improved Energy Efficiency. In: Sulaiman, S. (eds) Energy Efficiency in Mobility Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-0102-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0102-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0101-2

  • Online ISBN: 978-981-15-0102-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics