Skip to main content

Finite Difference Approximations

  • Chapter
  • First Online:

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 54))

Abstract

This chapter presents the formulation of higher order finite difference (FD) formulas for the spatial approximation of the time-dependent reaction–diffusion problems with a clear justification through examples, the supremacy between the second- and fourth-order schemes. As a consequence, methods for the solution of initial and boundary value PDEs, such as the method of lines (MOL), is of broad interest in science and engineering. This procedure begins with the discretization of the spatial derivatives in the PDE with algebraic approximations. The key idea of MOL is to replace the spatial derivatives in the PDE with the algebraic approximations. Once this procedure is done, the spatial derivatives are no longer stated explicitly in terms of the spatial independent variables. In other words, only one independent variable is remaining, the resulting semi-discrete problem has now become a system of coupled ordinary differential equations (ODEs) in time. Thus, one can apply any integration algorithm for the initial value ODEs to compute an approximate numerical solution to the PDE. Analysis of the basic properties of these schemes such as the order of accuracy, convergence, consistency, stability and symmetry are well examined in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Bahouri, J.Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations (Springer, Berlin, 2011)

    Book  Google Scholar 

  2. Z. Cinkir, A fast elementary algorithm for computing the determinant of Toeplitz matrices. J. Comput. Appl. Math. 255, 353–361 (2014)

    Article  MathSciNet  Google Scholar 

  3. R. Courant, K. Friedrichs, H. Lewy, On partial difference equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1967)

    Article  MathSciNet  Google Scholar 

  4. Y. Dimitrov, Numerical approximations for fractional differential equations. J. Fract. Calc. Appl. 5, 1–45 (2014)

    MathSciNet  Google Scholar 

  5. H. Ding, C. Li, Numerical algorithms for the fractional diffusion-wave equation with reaction term. Abstr. Appl. Anal. Article ID 493406, 15 (2013)

    MATH  Google Scholar 

  6. M. El-Mikkawy, A fast algorithm for evaluating \(n-\)th order tri-diagonal determinants. J. Comput. Appl. Math. 166, 581–584 (2004)

    Article  MathSciNet  Google Scholar 

  7. S.O. Fatunla, Numerical Methods for IVPs in Ordinary Differential Equations (Academic Press Inc., Harcourt Brace Jovanovich Publishers, New York, 1988)

    MATH  Google Scholar 

  8. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press, Cambrdge, 1996)

    Book  Google Scholar 

  9. B. Fornberg, Finite difference method. Scholarpedia 6(10), 9685 (2011)

    Google Scholar 

  10. B. Fornberg, T.A. Driscoll, A fast spectral algorithm for nonlinear wave equations with linear dispersion. J. Comput. Phys. 155, 456–467 (1999)

    Article  MathSciNet  Google Scholar 

  11. G. Gao, Z. Sun, Y. Zhang, A & #xC;finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231, 2865–2879 (2012)

    Article  MathSciNet  Google Scholar 

  12. S.D. Gedney, Introduction to the Finite-Difference Time-Domain (FDTD)-Method for Electromagnetics (Morgan and Claypool Publishers, Arizona, 2011)

    Book  Google Scholar 

  13. S. Hamdi, W.E. Schiesser, G.W. Griffiths, Method of lines. Scholarpedia 2(7), 2859 (2010)

    Article  Google Scholar 

  14. J.D. Hoffman, Numerical Methods for Engneers and Scientists (Marcel Dekker Inc., New York, 2001)

    Google Scholar 

  15. H. Holden, K.H. Karlsen, Nonlinear Partial Differential Equations, The Abel Symposium (Springer, Berlin, 2012)

    Book  Google Scholar 

  16. R.K. Jain, Numerical Solution of Differential Equations, 2nd edn. (Wiley Eastern Limited, New Delhi, 1984)

    MATH  Google Scholar 

  17. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Netherlands, 2006)

    MATH  Google Scholar 

  18. E. Kilic, M. El-Milkkawy, A computational algorithm for special \(n\)th-order pentadiagonal Toeplitz determinants. Appl. Math. Comput. 199, 820–822 (2008)

    MathSciNet  MATH  Google Scholar 

  19. N. Kreiss, J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations (Academic Press, San Diego, 1989)

    MATH  Google Scholar 

  20. J.D. Lambert, A. Watson, Symmetric multistep method for periodic initial value problem. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MathSciNet  Google Scholar 

  21. P.D. Lax, R.D. Richtmyer, Survey of the instability of linear finite difference equations. Commun Pure Appl Math 9, 267–293 (1956)

    Article  Google Scholar 

  22. P.D. Lax, B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy. Commun. Pure Appl. Math. 17, 381–398 (1964)

    Article  MathSciNet  Google Scholar 

  23. R.J. Leveque, Finite Difference Methods for Ordinary and Partial Differential Equations (SIAM, Philadelphia, 2007)

    Book  Google Scholar 

  24. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion ow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  25. G.H. Meyer, Initial Value Methods for Boundary Value Problems-Theory and Application of Invariant Imbedding (Academic Press, New York, 1973)

    MATH  Google Scholar 

  26. K.M. Owolabi, Robust IMEX schemes for solving two-dimensional reaction-diffusion models. Int. J. Nonlinear Sci. Numer. Simul. 16, 271–284 (2015). https://doi.org/10.1515/ijnsns-2015-0004

  27. K.M. Owolabi, K.C. Patidar, Existence and permanence in a diffusive KiSS modelwith robust numerical simulations. Int. J. Differ. Equ. 2015(485860), 8 (2015). https://doi.org/10.1155/2015/485860

    Article  MathSciNet  Google Scholar 

  28. K.M. Owolabi, K.C. Patidar, Numerical simulations of multicomponent ecological models with adaptive methods. Theor. Biol. Med. Model. 13, 1 (2016). https://doi.org/10.1186/s12976-016-0027-4

  29. K.M. Owolabi, K.C. Patidar, Numerical solution of singular patterns in one-dimensional Gray-Scott-like models. Int. J. Nonlinear Sci. Numer. Simul. 15, 437–462 (2014). https://doi.org/10.1515/ijnsns-2013-0124

  30. K.M. Owolabi, K.C. Patidar, Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology. Appl. Math. Comput. 240, 30–50 (2014)

    MathSciNet  MATH  Google Scholar 

  31. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  32. D.L. Powers, Boundary value Problems and Partial Differential equations (Elsevier Academic Press, USA, 2006)

    MATH  Google Scholar 

  33. A.R. Mitchell, D.F. Griffiths, The Finite Difference Method in Partial Differential Equations (John Willey and Sons Ltd, 1980)

    Google Scholar 

  34. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and derivatives: Theory and Applications (Gordon and Breach, Amsterdam, 1993)

    MATH  Google Scholar 

  35. W.E. Schisser, G.W. Griffiths, A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  36. T. Sogabe, A fast numerical algorithm for the determinant of a pentadiagonal matrix. Appl. Math. Comput. 196, 835–841 (2008)

    MathSciNet  MATH  Google Scholar 

  37. T. Sogabe, A note on a fast numerical algorithm for the determinant of a pentadiagonal matrix. Appl. Math. Comput. 201, 561–564 (2008)

    MathSciNet  MATH  Google Scholar 

  38. E. Sousa, The controversial stability analysis. Appl. Math. Comput. 145, 777–794 (2003)

    MathSciNet  MATH  Google Scholar 

  39. E. Sousa, Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228, 4038–4054 (2009)

    Article  MathSciNet  Google Scholar 

  40. J.C. Strikwerda, Partial Difference Schemes and Partial Differential Equations (SIAM, Philadelphia, 2004)

    MATH  Google Scholar 

  41. J.W. Thomas, Numerical Partial Differential Equations-Finite Difference Methods (Springer, New York, 1995)

    Book  Google Scholar 

  42. J.W. Thomas, Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations (Springer, New York, 1999)

    Book  Google Scholar 

  43. L.N. Trefethen, Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations (Cornell University, Ithaca, 1996)

    Google Scholar 

  44. L.N. Trefethen, Spectral Methods in MATLAB (SIAM, Philadelphia, 2000)

    Book  Google Scholar 

  45. L.N. Trefethen, M. Embere, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University Press, New Jersey, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owolabi, K.M., Atangana, A. (2019). Finite Difference Approximations. In: Numerical Methods for Fractional Differentiation. Springer Series in Computational Mathematics, vol 54. Springer, Singapore. https://doi.org/10.1007/978-981-15-0098-5_2

Download citation

Publish with us

Policies and ethics