Skip to main content

Improved Performance and Execution Time of Face Recognition Using MRSRC

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1048))

Abstract

Face recognition accuracy is vulnerable to environmental noise, low-resolution images, and other variations such as illumination, pose, and expression. The accuracy of the face recognition mostly relying on the features of training samples and testing samples. Recently, sparse representation based classification (SRC) has shown state-of-the-art results in face recognition and developed several extended versions of SRC methods to improve the performance. The time complexity of the SRC is depended on the size of the dictionary. In this paper, a new fusion approach MRSRC (Multi-resolution sparse representation based classification) is developed by incorporating the wavelet compressed features into the dictionary. MRSRC has shown better performance than an existing algorithm and also reduces the time complexity. The experimentation is carried out on benchmarking databases such as LFW and ORL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci 3(1), 71–86 (1991)

    Article  Google Scholar 

  2. Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 2037–2041 (2006)

    Article  Google Scholar 

  3. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  4. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Trans Neural Netw. 13(6), 1450–1464 (2002)

    Article  Google Scholar 

  5. Phillips, P.J.: Support vector machines applied to face recognition. In: Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, pp. 803–809. MIT Press, Cambridge, MA (1999)

    Google Scholar 

  6. Chien, J.-T., Chia-Chen, W.: Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1644–1649 (2002)

    Article  Google Scholar 

  7. Sharma, P., Yadav, R.N., Arya, K.V.: Pose-invariant face recognition using curvelet neural network. IET Biom. 3(3), 128–138 (2014)

    Article  Google Scholar 

  8. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  9. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  10. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)

    Article  Google Scholar 

  11. Ebied, H.M.: Feature extraction using PCA and Kernel-PCA for face recognition. In: 2012 8th International Conference on Informatics and Systems (INFOS), pp. MM–72–MM–77 (2012)

    Google Scholar 

  12. Yang, M.-H.: Face recognition using kernel methods. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 1457–1464. MIT Press (2002)

    Google Scholar 

  13. Lu, C.-Y., Min, H., Gui, J., Zhu, L., Lei, Y.-K.: Face recognition via weighted sparse representation. J. Vis. Commun. Image Represent. 24(2), 111–116 (2013). Sparse Representations for Image and Video Analysis

    Google Scholar 

  14. Yin, J., Liu, Z., Jin, Z., Yang, W.: Kernel sparse representation based classification. Neurocomputing 77(1), 120–128 (2012)

    Article  Google Scholar 

  15. Hui, K.H., Li, C.L., Zhang, L.: Sparse neighbor representation for classification. Pattern Recogn. Lett. 33(5), 661–669 (2012)

    Article  Google Scholar 

  16. Li, J., Lu, C.-Y.: A new decision rule for sparse representation based classification for face recognition. Neurocomputing 116, 265–271 (2013). Advanced Theory and Methodology in Intelligent Computing

    Article  Google Scholar 

  17. Hu, Z.P., Bai, F., Zhao, S.H., Wang, M., Sun, Z.: Extended common molecular and discriminative atom dictionary based sparse representation for face recognition. J. Vis. Commun. Image Represent. 40, 42–50 (2016)

    Article  Google Scholar 

  18. Liu, X., Lu, L., Shen, Z., Lu, K.: A novel face recognition algorithm via weighted kernel sparse representation. Future Gener. Comput. Syst. 80, 653–663 (2018)

    Article  Google Scholar 

  19. Lai, J., Jiang, X.: Modular weighted global sparse representation for robust face recognition. IEEE Signal Process. Lett. 19(9), 571–574 (2012)

    Article  Google Scholar 

  20. Yang, M., Zhang, L.: Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: Proceedings of the 11th European Conference on Computer Vision: Part VI, ECCV’10, pp. 448–461, Berlin, 2010. Springer

    Chapter  Google Scholar 

  21. Deng, W., Hu, J., Guo, J.: Extended src: undersampled face recognition via intraclass variant dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1864–1870 (2012)

    Article  Google Scholar 

  22. Deng, W., Hu, J., Guo, J.: In defense of sparsity based face recognition. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 399–406 (2013)

    Google Scholar 

  23. Iliadis, M., Spinoulas, L., Berahas, A.S., Wang, H., Katsaggelos, A.K.: Sparse representation and least squares-based classification in face recognition. In: 2014 22nd European Signal Processing Conference (EUSIPCO), pp. 526–530 (2014)

    Google Scholar 

  24. Jiang, X., Lai, J.: Sparse and dense hybrid representation via dictionary decomposition for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(5), 1067–1079 (2015)

    Article  Google Scholar 

  25. Gao, Y., Ma, J., Yuille, A.L.: Semi-supervised sparse representation based classification for face recognition with insufficient labeled samples. IEEE Trans. Image Process. 26(5), 2545–2560 (2017)

    Article  MathSciNet  Google Scholar 

  26. Du, S., Ward, R.: Wavelet-based illumination normalization for face recognition. In: IEEE International Conference on Image Processing 2005, vol. 2, pp. II–954 (2005)

    Google Scholar 

  27. Foon, N.H., Pang, Y.-H., Jin, A.T.B., Ling, D.N.C.: An efficient method for human face recognition using wavelet transform and zernike moments. In: Proceedings of International Conference on Computer Graphics, Imaging and Visualization, CGIV 2004, pp. 65–69 (2004)

    Google Scholar 

  28. Nie, X.F.: Face recognition using wavelet transform and kernel principal component analysis. In: 2010 International Conference on Future Information Technology and Management Engineering, vol. 3, pp. 186–189 (2010)

    Google Scholar 

  29. Emadi, M., Khalid, M., Yusof, R., Navabifar, F.: Illumination normalization using 2D wavelet. Procedia Eng. 41, 854–859. International Symposium on Robotics and Intelligent Sensors (IRIS 2012)

    Google Scholar 

  30. Donoho, D.L., Tsaig, Y.: Fast solution of \(\ell _{1}\)-norm minimization problems when the solution may be sparse. IEEE Trans. Inform. Theory 54(11), 4789–4812 (2008)

    Article  MathSciNet  Google Scholar 

  31. Ravichandran, D., Nimmatoori, R., Gulam Ahamad, M.: Mathematical representations of 1D, 2D and 3D wavelet transform for image coding, vol. 5, pp. 1457–1464 (2016)

    Google Scholar 

  32. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, Oct (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Madarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madarkar, J., Sharma, P., Singh, R. (2020). Improved Performance and Execution Time of Face Recognition Using MRSRC. In: Das, K., Bansal, J., Deep, K., Nagar, A., Pathipooranam, P., Naidu, R. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 1048. Springer, Singapore. https://doi.org/10.1007/978-981-15-0035-0_49

Download citation

Publish with us

Policies and ethics